Что такое пространство в физике определение. Пространство и время в классической физике

Мурманский Государственный педагогический институт Физико-математический факультет Кафедра физики по теме II Гнатюк Мурманск 7 Диалектический материализм исходит из того, что в мире нет ничего, кроме движущейся материи, и движущаяся материя не может двигаться иначе, как в пространстве и во времени Ленин В.И. ПСС, т. 18, с. 181 Пространство и время, следовательно, выступают фундаментальными формами существования материи.Классическая физика рассматривала пространственно - временной континуум как универсальную арену динамики физических объектов.

Однако развитие неклассической физики физики элементарных частиц, квантовой физики и др. выдвинуло новые представления о пространстве и времени. Оказалось, что эти категории неразрывно связаны между собой. Возникли разные концепции согласно одним, в мире вообще ничего нет, кроме пустого искривленного пространства, а физические объекты являются только проявлениями этого пространства.Согласно другим, пространство и время присущи лишь макроскопическим объектам.

Как видно, современная физика настолько разрослась и потеряла единство, что в ее различных разделах существуют прямо противоположные утверждения о природе и статусе пространства и времени. Этот факт требует тщательного исследования, так как может показаться, что представления современной физики противоречат фундаментальным положениям диалектического материализма.Правда, следует отметить, что в современной физике речь идет о пространстве и времени как о физических понятиях, как о конкретных математических структурах, наделенных соответствующими семантическими и эмпирическими интерпретациями в рамках оределнных теорий, и что выяснение макроскопичности подобных структур не имеет прямого отношения к положению диалектического материализма об универсальности пространства и времени, так как в этом речь идет уже о философских категориях.

Начинать исследование целесообразно с представлений античной натурфилософии, анализируя затем весь процесс развития пространственно - временных представлений вплоть до наших дней. 1 Аристотеля. Атомистическая доктрина была развита материалистами Древней Греции Левкиппом и Демокритом.

Согласно этой доктрины, вс природное многообразие состоит из мельчайших частичек материи атомов, которые двигаются, сталкиваются и сочетаются в пустом пространстве.Атомы бытие и пустота небытие являются первоначалами мира. Атомы не возникают и не уничтожаются, их вечность проистекает из безначальности времени.

Атомы двигаются в пустоте бесконечное время. Бесконечному пространству соответствует бесконечное время. Сторонники этой концепции полагали, что атомы физически неделимы в силу плотности и отсутствия в них пустоты.Множество атомов, которые не разделяются пустотой, превращаются в один большой атом, исчерпывающий собой мир. Сама же концепция была основана на атомах, которые в сочетании с пустотой образуют вс содержание реального мира. В основе этих атомов лежат амеры пространственный минимум материи.

Отсутствие у амеров частей служит критерием математической неделимости. Атомы не распадаются на амеры, а последние не существуют в свободном состоянии. Это совпадает с представлениями современной физики о кварках.Характеризуя систему Демокрита как теотию структурных уровней материи - физического атомы и пустота и математического амеры, мы сталкиваемся с двумя пространствами непрерывное физическое пространство как вместилище и математическое пространство, основанное на амерах как масштабных единицах протяжения материи.

В соответствии с атомистической концепцией пространства Демокрит решал вопросы о природе времени и движения. В дальнейшем они были развиты Эпикуром в систему. Эпикур рассмотривал свойства механического движения исходя из дискретного характера пространства и времени.Например, свойство изотахии заключается в том, что все атомы движутся с одинаковой скоростью. На математическом уровне суть изотахии состоит в том, что в процессе перемещения атомы проходят один атом пространства за один атом времени.

Таким образом, древнегреческие атомисты различали два типа пространства и времени. В их представлениях были реализованы 4 субстанциальная и атрибутивная концепции. Аристотель начинает анализ с общего вопроса о существовании времени, затем трансформирует его в вопрос о существовании делимого времени.Дальнейший анализ времени ведтся Аристотелем уже на физическом уровне, где основное внимание он уделяет взаимосвязи времени и движения.

Аристотель показывает. что время немыслимо, не существует без движения, но оно не есть и само движение. В такой модели времени реализована реляционная концепция. Измерить время и выбрать единицы его измерения можно с помощью любого периодического движения, но, для того чтобы полученная величина была универсальной, необходимо использовать движение с максимальной скоростью.В современной физике это скорость света, в античной и средневековой философии - скорость движения небесной сферы.

Пространство для Аристотеля выступает в качестве некоего отношения предметов материального мира, оно понимается как объективная категория, как свойство природных вещей. Механика Аристотеля функционировала лишь в его модели мира. Она была построена на очевидных явлениях земного мира. Но это лишь один из уровней космоса Аристотеля.Его космологическая модель функционировала в конечном неоднородном пространстве, центр которого совпадал с центром Земли. Космос был разделен на земной и небесный уровни.

Земной состоит из четырх стихий - земли, воды, воздуха и огня небесный - из эфирных тел, пребывающих в бесконечном круговом движении. Эта модель просуществовала около двух тысячелетий. Однако в системе Аристотеля были и другие положения, которые оказались более жизнеспособными и во многом определили развитие науки вплоть до настоящего времени.Речь идт о логическом учении Аристотеля на основе которого были разработаны первые научные теории, в частности геометрия Евклида.

В геометрии Евклида наряду с определениями и аксиомами встечаются и постулаты, что свойственно больше физике, чем арифметике. В постулатах сформулированы те задачи, которые считались решнными. В таком подходе представлена модель теории, которая работает и сегодня аксиоматическая система и эмпирический базис связываются операционными правилами.Геометрия Евклида является первой логической системой понятий, трактующих поведение каких-то природных объектов.

Огромной заслугой Евклида является выбор в качестве объектов теории тврдого тела и световых лучей. Г.Галилей вскрыл несостоятельность аристотелевской картины мира как в эмпирическом, так и в теоретико- логическом плане.С помощью телескопа он наглядно показал насколько глубоки были революционные представления Н. Коперника, который развил гелиоцентрическую модель мира. Первым шагом развития теории Коперника можно считать открытия И.Кеплера 1. Каждая планета движется по эллипсу, в одном из фокусов которого находится Солнце. 2. Площадь сектора орбиты, описуваемая радиус-вектором планеты, изменяется пропорционально времени. 3. Квадраты времн обращения планет вокруг Солнца относятся как кубы их средних расстояний от Солнца.

Галилей, Декарт и Ньютон рассматривали различные сочетания концепций пространства и инерции у Галилея признатся пустое пространство и круговое инерциальное движение, Декарт дошл до идеи прямолинейного инерциального движения, но отрицал пустое пространство, и только Ньютон объединил пустое пространство и прямолинейное инерциальное движение. Для Декарта не характерен осознанный и систематический учт относительности движения.

Его представления ограничены рамками геометризации физических объектов, ему чужда ньютоновская трактовка массы как инерциального сопротивления изменению.Для Ньютона же характерна динамическая трактовка массы, и в его системе это понятие сыграло основопологающую роль. Тело сохраняет для Декарта состояние движения или покоя, ибо это требуется неизменностью божества. То же самое достоверно для Ньютона вследствие массы тела. Понятия пространства и времени вводятся Ньютоном на начальном уровне изложения, а затем получают сво физическое содержание с помощью аксиом через законы движения.

Однако они предшествуют аксиомам, так как служат условием для реализации аксиом законы движения классической механики справедливы в инерциальных системах отсчта, которые определяются как системы, движущиеся инерциально по отношению к абсолютному пространству и времени.

У Ньютона абсолютное пространство и время являются ареной движения физических объектов. После выхода в свет Начал Ньютона физика начала активно развиваться, причм этот процесс происходил на основе механистического подхода.Однако, вскоре возникли разногласия между механикой и оптикой, которая не укладывалась в классические представления о движении тел. После того, как физики пришли к выводу о волновой природе света возникло понятие эфира - среды в которой свет распространяется.

Каждая частица эфира могла быть представлена как источник вторичных волн, и можно было объяснить огромную скорость света огромной тврдостью и упругостью частиц эфира. Иными словами эфир был материализацией Ньютоновского абсолютного пространства. Но это шло в разрез с основными положениями доктрины Ньютона о пространстве.Революция в физике началась открытием Рмера - выяснилось, что скорость света конечна и равна примерно 30 кмс. В 1728 году Брэдри открыл явление звздной аберрации.

На основе этих открытий было установлено, что скорость света не зависит от движения источника иили примника. О.Френель показал, что эфир может частично увлекаться движущимися телами, однако опыт А.Майкельсона 1881г. полностью это опроверг. Таким образом возникла необъяснимая несогласованность, оптические явления вс хуже сводились к механике.Но окончательно механистическую картину мира подорвало открытие Фарадея - Максвелла свет оказался разновидностью электромагнитных волн. Многочисленные экспериментальные законы нашли отражение в системе уравнений Максвелла, которые описывают принципиально новые закономерности. Ареной этих законов является вс пространство, а не одни точки, в которых находится вещество или заряды, как это принимается для механических законов.

Так возникла электромагнитная теория материи.Физики пришли к выводу о существовании дискретных элементарных объектов в рамках электромагнитной картины мира электронов.

Основные достижения в области исследования электрических и оптических явлений связаны с электронной теорией Г.Лоренца.Лоренц стоял на позиции классической механики. Он нашл выход, который спасал абсолютное пространство и время классической механики, а также объяснял результат опыта Майкельсона, правда ему пришлось отказаться от преобразований координат Галилея и ввести свои собственные, основанные на неинвариантности времени. tt-vxc2, где v - скорость движения системы относительно эфира, а х - координата той точки в движущейся системе, в которой производится измерение времени.

Время t он назвал локальным временем. На основе этой теории виден эффект изменения размеров тел L2L11v22c2. Сам Лоренц объяснил это опираясь на свою электронную теорию тела испытывают сокращение вследствие сплющивания электронов. Терия Лоренца исчерпала возможности классической физики.Дальнейшее развитие физики было на пути ревизии фундаментальных концепций классической физики, отказа от принятия каких - либо выделенных систем отсчта, отказа от абсолютного движения, ревизии концепции абсолютного пространства и времени.

Это было сделано лишь в специальной теории относительности Эйнштейна. 3 2.1. Специальная теория относительности. В теории относительности Эйнштейна вопрос о свойствах и структуре эфира трансформируется в вопрос о реальности самого эфира.Отрицательные результаты многих экспериментов по обнаружению эфира нашли естественное объяснение в теории относительности - эфир не существует. Отрицание существования эфира и принятие постулата о постоянстве и предельности скорости света легли в основу теории относительности, которая выступает как синтез механики и электродинамики.

Принцип относительности и принцип постоянства скорости света позволили Эйнштейну перейти от теории Максвелла для покоящихся тел к непротиворечивой электродинамике движущихся тел. Далее Эйнштейн рассматривает относительность длин и промежутков времени, что приводит его к выводу о том, что понятие одновременности лишено смысла Два события, одновременные при наблюдении из одной координатной системы, уже не воспринимаются как одновременные при рассмотрении из системы, движущейся относительно данной. Возникает необходимость развить теорию преобразования координат и времени от покоящейся системы к системе, равномерно и прямолинейно движущейся относительно первой.

Эйнштейн пришел к формулировке преобразований Лоренца где x, y, z, t - координаты в одной системе, x, y, z, t - в другой.

Из этих преобразований вытекает отрицание неизменности протяжнности и длительности, величина которых зависит от движения системы отсчта В специальной теории относительности функционирует новый закон сложения скоростей, из которого вытекает невозможность превышения скорости света.Коренным отличием специальной теории относительности от предшествующех теорий является признание пространства и времени в качестве внутренних элементов движения материи, структура которых зависит от природы самого движения, является его функцией.

В подходе Эйнштейна преобразования Лоренца оказываются связанными с новыми свойствами пространства и времени с относительностью длины и временного промежутка, с равноправностью пространства и времени, с инвариантностью пространственно - временного интервала.Важный вклад в понятие равноправность внс Г. Минковский. Он показал органическую взаимосвязь пространства и времени, которые оказались компонентами единого четырхмерного континуума.

Разделение на пространство и время не имеет смысла. Пространство и время в специальной теории относительности трактуется с точки зрения реляционной концепции. Однако было бы ошибочным представлять пространственно - временную структуру новой теории как проявление одной лишь концепции относительности. Введение Минковским четырхмерного формализма помогло выявить аспекты абсолютного мира, заданного в пространственно - временном континууме.В теории относительности, как и в классической механике, существуют два типа пространства и времени, которые реализуют субстанциальную и атрибутивную концепции.

В классической механике абсолютные пространство и время выступали в качестве структуры мира на теоретическом уровне. В специальной теории относительности аналогичным статусом обладает единое четырхмерное пространство - время.Переход от классической механики к специальной теории относительности можно представить так 1 на теоретическом уровне - это переход от абсолютных и субстанциальных пространства и времени к абсолютному и субстанциальному единому пространству - времени, 2 на эмпирическом уровне - переход от относительных и экстенсионных пространства и времени Ньютона к реляционному пространству и времени Эйнштейна.

Однако, когда Эйнштейн пытался расширить концепцию относительности на класс явлений, происходящих в неинерциальных системах отсчта, это привело к созданию новой теории гравитации, к развитию релятивистской космологии и т.д. Он был вынужден прибегнуть к помощи иного метода построения физических теорий, в котором первичным выступает теоретический аспект.

Новая теория - общая теория относительности - строилась путм построения обобщнного пространства и перехода от теоретической структуры исходной теории - специальной теории относительности - к теоретической структуре новой, обобщнной теории с последующей е эмпирической интерпретацией. Далее мы рассмотрим представление о пространстве и времени в свете общей теории относительности.Пространство и время в общей теории относительности и в релятивистской космологии.

Одной из причин создания общей теории относительности было желание Эйнштейна избавить физику от необходимости введения инерциальной системы отсчта. Создание новой теории началось с пересмотра концепции пространства и времени в полевой доктрине Фарадея - Максвелла и специальной теории относительности. Эйнштейн акцентировал внимание на одном важном пункте, который остался незатронутым.Речь идет о следующем положении специальной теории относительности двум выбранным материальным точкам покоящегося тела всегда соответствует некоторый отрезок определнной длины, независимо как от положения и ориентации тела, так и от времени.

Двум отмеченным показаниям стрелки часов, покоящихся относительно некоторой системы координат, всегда соответствует интервал времени определнной величины, независимо от места и времени.Следует отметить, что в общей теории относительности находит наиболее полное воплощение представление диалектического материализма о пространстве и времени как формах существования материи.

Специальная теория относительности не затрагивала проблему воздействия материи на структуру пространства-времени, а в общей теории Эйнштейн непосредственно обратился к органической взаимосвязи материи, движения, пространства и времени.Эйнштейн исходил из известного факта о равенстве инертной и тяжлой масс. Он усмотрел в этом равенстве исходный пункт, на базе которого можно объяснить загадку гравитации.

Проанализировав опыт Этвеша, Эйнштейн обобщил его результат в принцип эквивалентности физически невозможно отличить действие однородного гравитационного поля и поля, порожднного равноускоренным движением. Принцип эквивалентности носит локольный характер и, вообще говоря, не входит в структуру общей теории относительности.Он помог сформулировать основные принципы, на котрых базируется новая теория гипотезы о геометрической природе гравитации, о взаимосвязи геометрии пространства-времени и материи.

Кроме них Эйнштейн выдвинул ряд матаматических гипотез, без которых невозможно было бы вывести гравитационные уравнения пространство четырхмерно, его структура опрелеляется симметричным метрическим тензором, уравнения должны быть инвариантными относительно группы преобразований координат. В работе Относительность и проблема пространства Эйнштейн специально рассматривает вопрос о специфике понятия пространства в общей теории относительности.Согласно этой теории пространство не существует отдельно, как нечто противоположное тому, что заполняет пространство и что зависит от координат.

Пустое пространство, т.е. пространство без поля не существует. Пространство-время существует не само по себе, а только как структурное свойство поля. Для общей теории относительности до сих пор актуальной является проблема перехода от теоретических к физическим наблюдаемым величинам.Теория предсказала и объяснила три общелелятивистских эффекта были предсказаны и вычислены конкретные значения смещения перегелия Меркурия, было педсказано и обнаружено отклонение световых лучей звзд при их прохождении вблизи Солнца, был предсказан и обнаружен эффект красного гравитационного смещения частоты спектральных линий. Рассмотрим далее два направления, вытекающих из общей теории относительности геометризацию гравитации и релятивистскую космологию, т.к. с ними связано дальнейшее развитие пространственно-временных представлений современной физики.

Геометризация гравитации явилась первым шагом на пути создания единой теории поля. Первую попытку геометризации поля предприняв Г.Вейль. Она осуществлена за рамками римановской геометрии. Однако данное направление не привело к успеху.

Были попытки ввести пространства более высокой размерности. чем четырхмерное пространственно-временное многообразие Римана Калуца предложил пятимерное, Клейн - шестимерное, Калицын - бесконечное многообразие. Однако таким путм решить проблему не удавалось.На пути пересмотра евклидовой топологии пространства - времени строится современная единая теория поля - квантовая геометродинамика Дж. Уитлера.

В этой теории обобщение представлений о пространстве достигает очень высокой степени и вводится понятие суперпространства, как арены действия геометродинамики.При таком подходе каждому взаимодействию соответствует своя геометрия, и единство этих теорий заключается в существовании общего принципа, по которому порожнаются данные геометрии и расслаиваются соответствующие пространства.

Поиски единых теорий поля продолжаются. Что касается квантовой геометродинамики Уитлера, то перед ней стоит ещ более грандиозная задача - постичь Вселенную и элементарные частицы в их единстве и гармонии. Доэйнштейновские представления о Вселенной можно охарактеризовать следующим образом Вселенная бесконечна и однородна в пространстве и стационарна во времени.Они были заимствованы из механики Ньютона - это абсолютные пространство и время, последнее по своему характеру Евклидово.

Такая модель казалась очень гармоничной и единственной. Однако первые попытки приложения к этой модели физических законов и концепций привели к неестественным выводам. Уже классическая космология требовала пересмотра некоторых фундаментальных положений, чтобы преодолеть противоречия.Таких положений в классической космологии четыре стационарность Вселенной, е однородность и изотропность, евклидовость пространства. Однако в рамках классической космологии преодолеть противоречия не удалось.

Модель Вселенной, которая следовала из общей теории относительности, связана с ревизией всех фундаментальных положений классической космологии. Общая теория относительности отождествила гравитацию с искривлением четырхмерного пространства - времени.Чтобы построить работающую относительно несложную модель, учные вынуждены ограничить всеобщий пересмотр фундаментальных положений классической космологоии общая теория относительности дополняется космологическим постулатом однородности и изотропности Вселенной.

Строгое выполнение принципа изотропности Вселенной ведт к признанию е однородности. На основе этого постулата в релятивистскую космологию вводится понятие мирового пространства и времени. Но это не абсолютные пространство и время Ньютона, которые хотя тоже были однородными и изотропными, но в силу евклидовости пространства имели нулевую кривизну.В применении к неевклидову пространству условия однородности и изотропности влекут постоянство кривизны, и здесь возможны три модификации такого пространства с нулевой, отрицательной и положительной кривизной.

Возможность для пространства и времени иметь различные значения постоянной кривизны подняли в космологии вопрос конечна Вселенная или бесконечна. В классической космологии подобного вопроса не возникало, т.к. евклидовость пространства и времени однозначно обуславливала е бесконечность.Однако в релятивистской космологии возможен и вариант конечной Вселенной - это соответствует пространству положительной кривизны.

Вселенная Эйнштейна представляет собой трхмерную сферу - замкнутое в себе неевклидово трхмерное пространство. Оно является конечным, хотя и безграничным. Вселенная Эйнштейна конечна в пространстве, но бесконечна во времени. Однако стационарность вступала в противоречие с общей теорией относительности, Вселенная оказалась неустойчивой и стремилась либо расшириться, либо сжаться.Чтобы устранить это противоречие Эйнштейн ввл в уравнения теории новый член с помощью которого во Вселенную вводились новые силы, пропорциональные расстоянию, их можно представить как силы притяжения и отталкивания.

Дальнейшее развитие космологии оказалось связанным не со статической моделью Вселенной. Впервые нестационарная модель была развита А. А. Фридманом. Метрические свойства пространства оказались изменяющимися во времени. Выяснилось, что Вселенная расширяется.Подтверждение этого было обнаружено в 1929 году Э. Хабблом, который наблюдал красное смещение спектра.

Оказалось, что скорость разбегания галактик возрастает с расстоянием и подчиняется закону Хаббла V HL, где Н - постоянная Хаббла, L - расстояние. Этот процесс продолжается и в настоящее время. Всвязи с этим встают две важные проблемы проблема расширения пространства и проблема начала времени. Существует гипотеза, что так называние разбегание галактик - наглядное обозначение раскрытой космологией нестационарности пространственной метрики.Таким образом, не галактики разлетаются в неизменном пространстве, а расширяется само пространство. Вторая проблема связана с представлением о начале времени.

Истоки истории Вселенной относятся к моменту времени t0, когда произошл так называемый Большой взрыв. В.Л. Гинзбург считает, что Вселенная в прошлом находилась в особом состоянии, которое отвечает началу времени, понятие времени до этого начала лишено физического, да и любого другого смысла.В релятивистской космологии была показана относительность конечности и бесконечности времени в различных системах отсчта.

Это положение особо чтко отразилось в представлениях о чрных дырах. Речь идет об одном из наиболее интересных явлений современной космологии - гравитационном коллапсе. С.Хокинс и Дж. Эллис отмечают Расширение Вселенной во многих отношениях подобно коллапсу звезды, если не считать того, что направление времени при расширении обратное.Как начало Вселенной, так и процессы в чрных дырах связаны со сверхплотным состоянием материи. Таким свойством обладают космические тела после пересечения сферы Шварцшильда условная сфера с радиусом r 2GMc2, где G - гравитационная постоянная, М - масса.

Независимо от того, в каком состоянии космический объект переск соответствующую сферу Шварцшильда, далее он стремительно переходит в сверхплотное состояние в процессе гравитационного коллапса.После этого от звезды невозможно получить никакой информации, т.к. ничто не может вырваться из этой сферы в окружающее пространство - время звезда потухает для удалнного наблюдателя, и в пространстве образуется чрная дыра. Между коллапсирующей звездой и наблюдателем в обычном мире пролегает бесконечность, т. к. такая звезда находится за бесконечностью во времени.

Таким образом, оказалось, что пространство - время в общей теории относительности содержит сингулярности, наличие которых заставляет пересмотреть концепцию пространственно - временного континуума как некоего дифференцируемого гладкого многообразия.Возникает проблема, связанная с представлением о конечной стадии гравитационного коллапса, когда вся масса звезды спрессовывается в точку r - 0, когда бесконечна плотность материи, бесконечна кривизна пространства и т.д. Это вызывает обоснованное сомнение.

Дж. Уитлер считает, что в заключительной стадии гравитацинного коллапса вообще не существует пространства - времени. С. Хокинг пишет Сингулярность - это место, где разрушается классическая концепция пространства и времени так же, как и все известные законы физики, поскольку все они формулируются на основе классического пространства - времени.

Этих представлений придерживаются большинство современных космологов. На заключительных стадиях гравитационного коллапса вблизи сингулярности необходимо учитывать квантовые эффекты. Они должны играть на этом уровне доминирующую роль и могут вообще не допускать сингулярности. Предполагается, что в этой области происходят субмикроскопические флуктуации материи, которые и составляют основу глубокого микромира.Вс это свидетельствует о том, что понять мегамир невозможно без понимания микромира. 4. ПРОСТРАНСТВО И ВРЕМЯ В ФИЗИКЕ МИКРОМИРА. Пространственно-временные представления квантовой механики.

Создание Эйнштейном специальной теории относительности не исчерпывает возможноси взаимодействия механики и электродинамики. В связи с объяснением теплового излучения было выявлено противоречие как в истолковании экспериментальных данных, так и в теоретической согласованности этих выводов.Это повлекло за собой рождение квантовой механики.

Она положила начало неклассической физике, открыла дорогу к познанию микрокосмоса, к овладению внутриатомной энергией, к пониманию процессов в недрах звзд и начале Вселенной. В конце XIX века физики начали исследовать, как распределяется излучение по всему спектру частот.В тот период физики задались также целью выяснить природу взаимосвязи энергии излучения и температуры тела. М. Планк пытался решить эту проблему с помощью методов классической электродинамики, но это не привело к успеху.

Попытка решить проблему с позиции термодинамики столкнулась с рассогласованностью теории и эксперимента. Планк получил формулу плотности излучения с помощью интерполяции где v - частота излучения, Т - температура, k - постоянная Больцмана. Полученная Планком формула была очень содержательной, кроме того, она включала ранее неизвестную постоянную h, которую Планк назвал элементарным квантом действия.Справедливость формулы Планка достигалась очень странным для классической физики предположением процесс излучения и поглощения энергии является дискретным. C работами Эйнштейна о фотонах в физику вошло представление о карпускулярно - волновом дуализме.

Реальная природа света может быть представлена как диалектическое единство волны и частиц. Однако возник вопрос о сущности и структуре атома. Было предложено множеств о противоречащих друг другу моделей.Выход был найден Н. Бором путм синтеза планетарной модели атома Резерфорда и квантовой гипотезы.

Он предположил, что атом может иметь ряд стационарных состояний при переходе в которые поглащается или излучается квант энергии. В самом же стационарном состоянии атом не излучает. Однако теория Бора не объясняла интенсивности и поляризации излучения. Частично с этим удалось справиться с помощь принципа соответствия Бора. Этот принцип сводится к тому, что при описании любой микроскопической теории необходимо пользоваться терминологией, применяемой в макромире.Принцип соответствия сыграл важную роль в исследованиях де Бройля.

Он выяснил, что не только световые волны обладают дискретной структурой, но и элементарным частоцам материи присущ волновой характер. На повестку дня встала проблема создания волновой механики квантовых объектов, которая в 1929 году была решена Э. Шредингером, который вывел волновое уравнение, носящее его имя. Н. Бор вскрыл истинный смысл волнового уравнения Шредингера.Он показал, что это уравнение описывает амплитуду вероятности нахождения частицы в данной области пространства.

Чуть раньше 1925г. Гейзенбергом была разработана квантовая механика. Формальные правила этой теории основаны на соотношении неопределнностей Гейзенберга чем больше неопределнность пространственной координаты, тем меньше неопределнность значения импульса частицы. Аналогичное соотношение имеет место для времени и энергии частицы.Таким образом, в квантовой механике была найдена принципиальная граница применимости классических физических представлений к атомным явлениям и процессам.

В квантовой физике была поставлена важная проблема о необходимости пересмотра пространственных представлений лапласовского детерминизма классической физики.Они оказались лишь приближнными понятиями и основывались на слишком сильных идеализациях. Квантовая физика потребовала более адекватных форм упорядоченности событий, в которых учитывалось бы существование принципиальной неопределнности в состоянии объекта, наличие черт целостности и индивидуальности в микромире, что и выражалось в понятии универсального кванта действия h. Квантовая механика была положена в основу бурно развивающейся физики элементарных частиц, количество которых достигает нескольких сотен, но до настоящего времени ещ не создана корректная обобщающая теория. В физике элементарных частиц представления о пространстве и времени столкнулись с ещ большими трудностями.

Оказалось, что микромир является многоуровневой системой, на каждом уровне которой господствуют специфические виды взаимодействий и специфические свойства пространственно - временных отношений.

Область доступных в эксперименте микроскопических интервалов условно делится на четыре уровня 1уровень молекулярно - атомных явлений, 2 уровень релятивистских квантовоэлектродинамических процессов, 3 уровень элементарных частиц, 4уровень ультрамалых масштабов, где пространственно - временные отношения оказываюстя несколько иными, чем в классической физике макромира.В этой области по-иному следует понимать природу пустоты - вакуум.

В квантовой электродинамике вакуум является сложной системой виртуально рождающихся и поглащающихся фотонов, электронно - позитронных пар и других частиц. На этом уровне вакуум рассматривают как особый вид материи - как поле в состоянии с минимально возможной энергией. Квантовая электродинамика впервые наглядно показала, что пространство и время нельзя оторвать от материи, что так называемая пустота - это одно из состояний материи.Квантовая механика была применена к вакууму, и оказалось, что минимальное состояние энергии не характеризуется нулевой е плотностью.

Минимум е оказался равным уровню осциллятора hv2. Допустив скромные 0.5hv для каждой отдельной волны пишет Я. Зельдович мы немедленно с ужасом обнаруживаем, что все волны вместе дают бесконечную плотность энергии. Эта бесконечная энергия пустого пространства таит в себе огромные возможности, которые ещ предстоит освоить физике.Продвигаясь вглубь материи, учные перешагнули рубеж 10 см. и начали исследовать физические процессы в области субатомных пространственно - временных отношений. На этом уровне структурной организации материи определяющую роль играют сильные взаимодействия элементарных частиц.

Здесь иные пространственно - временные понятия. Так, специфике микромира не соответствуют обыденные представления о соотношении части и целого.Ещ более радикальных изменений пространственно - временных представлений требует переход к исследованию процессов, характерных для слабых взаимодействий.

Поэтому на повестку дня встат вопрос о нарушении пространственной и временной чтности, т.е. правое и левое пространственные направления оказываются неэквивалентными. В этих условиях были предприняты различные попытки принципиально нового истолкования пространства и времени. Одно направление связано с изменением представлений о прерывности и непрерывности пространства и времени, а второе - с гипотезой о возможной макроскопической природе пространсва и времени.Рассмотрим более подробно эти направления.

Прерывность и непрерывность пространства и времени в физике микромира. Физика микромира развивается в сложном единстве и взаимодействии прерывности и непрерывности. Это относится не только к структуре материи, но и к структуре пространства и времени. После создания теории относительности и квантовой механики учные попытались объединить эти две фундаментальные теории.Первым достижением на этом пути явилось релятивистское волновое уравнение для электрона.

Был получен неожиданный вывод о существовании антипода электрона - частицы с противоположным электрическим зарядом.В настоящее время известно, что каждой частице в природе соответствует античастица, это обусловлено фундаментальными положениями современной теории и связано с кардинальными свойствами пространства и времени чтность пространства, отражение времени и т.д Исторически первой квантовой теорией поля была квантовая электродинамика, включающая в себя описание взамодействий электронов, позитронов, мюонов и фотонов. Это пока единственная ветвь теории элементарных частиц, которая достигла высокого уровня развития и известной завершнности.

Она является локальной теорией, в ней функционируют заимствованные понятия классической физики, основанные на концепции пространственно - временной непрерывности точечность заряда, локальность поля, точечность взаимодействия и т. д. Наличие этих понятий влечт за собой существенные трудности, связанные с бесконечными значениями некоторых величин масса, собственная энергия электрона, энергия нулевых колебаний поля и т.д Эти трудности учные пытались преодалеть путм введения в теорию понятий о дискретном пространстве и времени.

Такой подход намечает единственный выход из неопределнности бесконечности, т.к. содержит фундаментальную длину - основу атомистического пространства.Позже была построена обобщнная квантовая электродинамика, которая также является локальной теорией, описывающей точечные взаимодействия точечных частиц, что приводит к существенным трудностям. Например, наличие электромагнитного и электронно - позитронного вакуума обуславливает небходимость внутренней сложности, структурности электрона.

Электрон поляризует вакуум, и флуктуации последнего создают вокруг электрона атмосферу из виртуальной электронно - позитронной пары. При этом вполне вероятен процесс аннигиляции исходного электрона с позитроном пары. Оставшийся электрон можно рассматривать как исходный, но в другой точке пространства. Подобная специфика объектов квантовой электродинамики является веским аргументом в пользу концепции пространственно - временной дискретности.

В е основе лежит идея о том, что масса и заряд электрона находятся в разных физических полях, отличны от массы и заряда идеализированного изолированного от мира электрона. Разность между массами оказывается бесконечной.При оперировании этими бесконечностями их можно выразить через физические константы - заряд и массу реального электрона. Это достигается путм перенормировки теории.

Что касается теории сильных взаимодействий, то там процедуру перенормировки использовать не удатся. Всвязи с этим в физике микромира широкое развитие получило направление, связанное с пересмотром концепции локальности. Отказ от точечности взаимодействия микрообъектов может осуществляться двумя методами. При первом исходят из положения. что понятие локального взаимодействия лишено смысла.Второй основан на отрицании понятия точечной координаты пространства - времени, что приводит к теории квантового пространства - времени.

Протяжнная элементарная частица обладает сложной динамической структурой. Подобная сложная структура микрообъектов ставит под сомнение их элементарность. Учные столкнулись не только со сменой объекта, к которому прилагается свойство элементарности, но и с пересмотром самой диалектики элементарного и сложного в микромире.Элементарные частицы не элементарны в классическом смысле они похожи на классические сложные системы, но они не являются этими системами.

В элементарных частицах сочетаются противоположные свойства элементарного и сложного. Отказ от представлений о точечности взаимодействия влечт за собой изменение наших представлений о структуре пространства - времени и причинности, которые тесно взаимосвязаны. По мнению некоторых физиков, в микромире теряют смысл обычные временные отношения раньше и позже.В области нелокального взаимодействия события связаны в некий комок, в котором они взаимно обуславливают друг друга, но не следуют одно за другим.

Таково принципиальное положение дел, сложившееся в развитии квантовой теории поля, начиная с работ Гейзенберга и кончая современными нелокальными и нелинейными теориями, где нарушение причинности в микромире провозглашается в качестве принципа и отмечается, что разграничение пространства - времени на области малые, где причинность нарушена, и большие, где она выполнена, невозможно без появления в нелокальной теории новой константы размерности длины - элементарной длины.

С этим атомом пространства связан и элементарный момент времени хронон, и именно в соответствующей им пространственно - временной области протекает сам процесс взаимодействия частиц. Теория дискретного пространства - времени продолжает развиваться. Открытым остатся вопрос о внутренней структуре атомов пространства и времени.Существует ли пространство и время в атомах пространства и времени Это одна из версий гипотезы о возможной макроскопичности пространства и времени, которая будет рассмотрена ниже. Проблема микроскопичности пространства и времени в микромире.

В современной физике микромира возникла следующая проблема речь стала идти не об изменении свойств или структуры пространства и времени, а об их макроскопической природе, т.е. о том, что их вообще возможно нет в микромире.Такая постановка вопроса связана с созданием квантовой механики. Что касается сфер приложимости гипотезы, то е сторонники разошлись во мнениях одни считают, что она имеет отношение лишь к теоретическому описанию объективной реальности в квантовой физике, другие расширили е уровня философского положения о неуниверсальности пространства и времени как форм существования движущейся материи.

В ньютоновской механике теоретическое и эмпирическое пространство и время во многом совпадали. С развитием физики это совпадение нарушается.В связи с этим возникает вопрос должна ли эмпирическая структура физической теории выступать обязательно в форме пространства и времени классической физики Гейзенберг следующим образом описывает создавшуюся в физике микромира ситуацию Оказывается, в наших исследованиях атомных процессов неизбежно существует своеобразное раздвоение.

С одной стороны, вопросы, с которыми мы обращаемся к природе посредством экспериментов, всегда формулируются в понятиях классической физики, в особенности в понятиях пространства и времени, поскольку наш язык приспособлен к передаче только обыденного нашего окружения и поскольку опыты мы не можем провести иначе, как только во времени и в пространстве.

С другой стороны, математические выражения, пригодные для изображения экспериментальных результатов, представляют собой волновые функции в многомерных конфигурационных пространствах, не допускающих какой-либо простой наглядной интерпретации. Из этого положения можно сделать вывод, что пространство и время классической физики являются эмпирической структурой квантовой механики.Так в чм же суть рассматриваемой гипотезы Эмпирическая структура физической теории заведомо макроскопична.

Теоретическая структура при описании микромира выступает как пространство и время.Пространство и время можно использовать при развитии физических теорий, описывающих другие уровни строения материи, но это сопряжено с неоправданным усложнением теории, и поэтому от них отказываются. Речь идт о макроскопичности пространства и времени, которые выступают в качестве теоретических структур физических теорий.

В заключении рассмотрим гипотезу о макроскопической природе пространства и времени с точки зрения диалектико - материалистического учения об их универсальности. Речь едт о пространстве и времени как категориях современной физики, которые являются специфическими метрическими структурами сосуществования данных явлений и смены конкретных состояниий, что предполагает возможность различия двух соседних точек и двух последующих моментов.Свойства соседства и следования являются конкретными и специфическими свойствами структуры, которые могут существовать далеко не везде.

С этой точки зрения можно даже говорить о внепространственных и вневременных формах существования материи.Однако, можно задать и другой вопрос если пространство и время оказываются неуниверсальными, то какой смысл нужно вкладывать в них сейчас, чтобы они попрежнему оставались универсальными С этим вопросом связано возникновение и развитие различных модификаций гипотезы о макроскопической природе пространства и времени.

Если этой гипотезе пытаются придать философский статус, то это необоснованно, т.к. она носит сугубо физический характер и не вступает в противоречие с тезисом диалектическо - материалистической философии о всеобщности пространства и времени.Но в рамках физической проблематики эта гипотеза не означает, что макромир обладает только соответствующей пространственной природой, т.е. следует учитывать, что макромир не исчерпывается классическими объектами в классических пространстве и времени, что неклассический макромир может потребовать неклассической пространственно - временной организации 1. Аскин Я.Ф. Проблема времени.

Е физическое истолкование, М. Мысль 1986. 2. Ахундов М.Д. Пространство и время в физическом познании, М.Мысль 1982 253 с. 3. Ахундов М. Д. Проблемы прерывности и непрерывности пространства и времени, М.Наука 1989 256 с. 4. Ахундов М.Д. Концепции пространства и времени истоки, эволюция, перспективы, М.Наука 1982 222 с. 5. Осипов А.И. Пространство и время как категории мировоззрения и регуляторы практической деятельности, МинскНаука и техника 1989 220 с. 6. Потмкин В.К Симанов А.Л. Пространство в структуре мира, НовосибирскНаука 1990 176 с. 7. Эйнштейн А. Собрание научных трудов в четырх томах.

Том I. Работы по теории относительности 1905-1920, М.Наука 1985 700с.

Что будем делать с полученным материалом:

Если этот материал оказался полезным для Вас, Вы можете сохранить его на свою страничку в социальных сетях:

ПРОСТРАНСТВО И ВРЕМЯ

ПРОСТРАНСТВО И ВРЕМЯ

Категории, обозначающие осн. формы существования материи. Пр-во (П.) выражает порядок сосуществования отд. объектов, (В.) - порядок смены явлений. П. и в.- осн. понятия всех разделов физики. Они играют гл. роль на эмпирич. уровне физ. познания - непосредств. содержание результатов наблюдений и экспериментов состоит в фиксации пространственно-временных совпадений. П. и в. служат также одними из важнейших средств конструирования теор. моделей, интерпретирующих эксперим. данные. Обеспечивая отождествление и различение (индивидуализацию) отд. фрагментов материальной действительности, П. и в. имеют решающее значение для построения физ. картины . Св-ва П. и в. делят на м е т р и ч е с к и е (протяжённость и длительность) и топологические (размерность , непрерывность и П. и в., порядок и направление В.). Совр. теорией метрич. св-в П. и в. явл. - специальная (см. ОТНОСИТЕЛЬНОСТИ ТЕОРИЯ) и общая (см. ТЯГОТЕНИЕ). Исследование топологич. св-в П. и в. в физике было начато в 60-70-х гг. и пока не вышло из стадии гипотез. Историч. развитие физ. представлений о П. и в. проходило по двум направлениям в тесной связи с разл. философскими представлениями. В начале одного из них лежали идеи Демокрита, приписывающего пустоте особый род бытия. Они нашли наиб. полное физ. воплощение в ньютоновских понятиях абс. П. и абс. В. Согласно И. Ньютону, абс. П. и в. представляли собой самостоят. сущности, к-рые не зависели ни друг от друга, ни от находящихся в них материальных объектов и протекающих в них процессов. Др. направление развития представлений о П. и в. восходит к Аристотелю и было разработано в философских работах нем. учёного Г. В. Лейбница, трактовавшего П. и в. как определённые типы отношений между объектами и их изменениями, не имеющие самостоят. существования. В физике концепция Лейбница была развита А. Эйнштейном в теории относительности.

Спец. теория относительности выявила зависимость пространств. и временных хар-к объектов от скорости их движения относительно определённой системы отсчёта и объединила П. и в. в единый четырёхмерный п р о с т р а н с т в е н н о-в р е м е н н о й к о н т и н у у м - пространство-время (п.-в.). Общая теория относительности вскрыла зависимость метрич. хар-к п.-в. от распределения тяготеющих (гравитац.) масс, наличие к-рых приводит к искривлению п.-в. В общей теории относительности от характера распределения масс зависят и такие фундам. свойства п.-в., как конечность и бесконечность, к-рые также обнаружили свою относительность.

Взаимосвязь св-в симметрии П. и в. с законами сохранения физ. величин была установлена ещё в классич. физике. Закон сохранения импульса оказался тесно связанным с однородностью П., закон сохранения энергии - с однородностью В., закон сохранения момента кол-ва движения - с изотропностью пр-ва (см. СОХРАНЕНИЯ ЗАКОНЫ , СИММЕТРИЯ ЗАКОНОВ ФИЗИКИ). В спец. теории относительности эта связь обобщается на четырёхмерное п.-в. Общерелятивистское обобщение последовательно провести пока не удалось.

Серьёзные трудности возникли также при попытке использовать выработанные в классич. (в т. ч. релятивистской), т. е. неквантовой, физике понятия П. и в. для теор. описания явлений в микромире. Уже в нерелятивистской квант. механике оказалось невозможным говорить о траекториях микрочастиц, и применимость понятий П. и в. к теор. описанию микрообъектов была ограничена дополнительности принципом (или неопределённостей соотношением). С принципиальными трудностями встречается экстраполяция макроскопич. понятий П. и в. на микромир в квантовой теории поля (расходимости , отсутствие объединения унитарной симметрии с пространственно-временными, теоремы Уайтмана и Хаага). С целью преодоления этих трудностей был выдвинут ряд предложений по модификации смысла понятий П. и в.- квантование пространства-времени, изменение сигнатуры метрики П. и в., увеличение размерности п.-в., учёт его топологии (геометродинамика) и др. Наиб. радикальной попыткой преодоления трудностей релятивистской квант. теории явл. гипотеза о неприменимости понятий п.-в. к микромиру. Аналогичные соображения высказываются также в связи с попытками осмысления природы нач. сингулярности в модели расширяющейся горячей Вселенной. Большинство физиков, однако, убеждены в универсальности п.-в., признавая необходимость существ. изменения смысла понятий п.-в.

Физический энциклопедический словарь. - М.: Советская энциклопедия . Главный редактор А. М. Прохоров . 1983 .

ПРОСТРАНСТВО И ВРЕМЯ

В физике определяются в общем виде как фундам. структуры координации материальных объектов и их состояний: система отношений, отображающая координацию сосуществующих объектов (расстояния, ориентацию и т. д.), образует , а система отношений, отображающая координацию сменяющих друг друга состояний или явлений (последовательность, длительность и т. д.), образует время. П. и в. являются организующими структурами разл. уровней физ. познания и играют важную роль в межуровневых взаимоотношениях. Они (или сопряжённые с ними конструкции) во многом определяют структуру (метрическую, топологическую и т. д.) фундам. физ. теорий, задают структуру эмпирич. интерпретации и верификации физ. теорий, структуру операциональных процедур (в основе к-рых лежат фиксации пространственно-временных совпадений в измерит. актах, с учётом специфики используемых физ. взаимодействий), а также организуют физ. картины мира. К такому представлению вёл весь историч. путь концептуального развития.

В наиб. архаичных представлениях П. и в. вообще не вычленялись из материальных объектов и процессов природы (в к-рой достаточно мирно уживались как естественные, так и сверхъестественные персонажи): разл. участки территории обитания наделялись разл. положит. и отрицат. качествами и силами в зависимости от присутствия на них разл. сакральных объектов (захоронения предков, тотемы, храмы и т. д.), а каждому движению было сопричастно своё время. Время также членилось на качественно разл. периоды, благоприятные или зловредные по отношению к жизнедеятельности древних социумов. Ландшафт и календарные циклы выступали запёчатлённым мифом. В дальнейшем развитии мифологич. картина мира стала функционировать в рамках циклич. времени; будущее всегда оказывалось возрождением сакрального прошлого. На страже этого процесса стояла жёсткая идеология (обряды, запреты, табу и т. д.), принципами к-рой нельзя было поступиться, ибо они были призваны не допускать никаких новаций в этот мир вечных повторений, а также отрицали историю и историч. время (т. е. линейное время). Такие представления можно рассматривать как архаичный прообраз модели неоднородного и неизотропного П. и в. Учитывая, что развитая мифология пришла к представлению о членении мира на уровни (первоначально на Небо, Землю и Подземный мир, с последующим выяснением "тонкой структуры" двух крайних уровней, напр. седьмое небо, круги ада), можно дать более ёмкое определение П. и в. мифологич. картины мира: циклич. структура времени и многослойный пространства (Ю. М. Лотман). Естественно, это всего лишь совр. реконструкция, в к-рой П. и в. уже абстрагированы от материальных объектов и процессов; что же касается человеческого познания, то оно к подобному абстрагированию пришло не в архаичной мифологии, а в рамках последующих форм обществ. сознания (монотеистич. религия, натурфилософия и т. д.).

Начиная с этого момента, П. и в. получают самостоят. статус в качестве фундам. фона, на к-ром разворачивается природных объектов. Такие идеализированные П. и в. часто даже подвергались обожествлению. В античной натурфилософии происходит рационализация мифо-религиозных представлений: П. и в. трансформируются в фундам. субстанции, в первооснову мира. С этим подходом связана субстанциальная концепция П. и в. Таковы, напр., пустота Демокрита или топос (место) Аристотеля - это разл. модификации концепции пространства как вместилища ("ящик без стенок" и т. д.). Пустота у Демокрита заполнена ато-мистич. материей, а у Аристотеля материя континуальна и заполняет без разрывов - все места заняты. Т. о., аристотелево отрицание пустоты не означает отрицания пространства как вместилища. Субстанциальная концепция времени связана с представлением о вечности, некой неметризованной абс. длительности. Частное эмпирич. время рассматривалось как движущийся образ вечности (Платон). Это время получает числовую оформленность и метризуется с помощью вращения неба (или иных, менее универсальных, периодич. природных процессов) в системе Аристотеля; здесь время выступает уже не как фундам. субстанция, а как система отношений ("раньше", "позже", "одновременно" и т. д.) и реализуется реляционная концепция. Ей соответствует реляционная концепция пространства как система отношений материальных объектов и их состояний.

Субстанциальная и реляционная концепции П. и в. функционируют соответственно на теоретич. и эмпирич. (или умозрительном и чувственнопостигаемом) уровнях натурфилософских и естественнонауч. систем. В ходе человеческого познания происходит конкуренция и смена подобных систем, что сопровождается существенным развитием и изменением представлений о П. и в. Это достаточно чётко проявилось уже в античной натурфилософии: во-первых, в отличие от бесконечной пустоты Демокрита, пространство Аристотеля конечно и ограниченно, ибо сфера неподвижных звёзд пространственно замыкает космос; во-вторых, если пустота Демокрита является началом субстанциально-пассивным, лишь необходимым условием движения атомов, то эпос является началом субстанциально-активным и любое место наделено своей специфич. силой. Последнее характеризует динамику Аристотеля, на базе к-рой была создана геоцентрич. космологич. модель. Космос Аристотеля чётко разделён на земной (подлунный) и небесный уровни. Материальные объекты подлунного мира участвуют либо в прямолинейных естеств. движениях и движутся к своим естеств. местам (напр., тяжёлые тела устремляются к центру Земли), либо в вынужденных движениях, к-рые продолжаются, пока на них действует движущая . Небесный мир состоит из эфирных тел, пребывающих в бесконечном совершенном круговом естеств. движении. Соответственно в системе Аристотеля была развита матем. астрономия небесного уровня и качеств. (механика) земного уровня мира.

Ещё одно концептуальное достижение Древней Греции, к-рое определило дальнейшее развитие представлений о пространстве (и времени),- это геометрия Евклида, чьи знаменитые "Начала" были развиты в виде аксиоматич. системы и справедливо рассматриваются как древнейшая ветвь физики (А. Эйнштейн) и даже как космологич. теория [К. Поппер (К. Popper), И. Ла-катос (I. Lakatos)]. Картина мира Евклида отлична от аристотелевой и включает в себя представление об однородном и бесконечном пространстве. Евклидова геометрия (и ) не только сыграла роль концептуальной основы классич. механики, определив такие фундам. идеализированные объекты, как пространство, абсолютно твёрдый (самоконгруэнтный) , геометризованный световой и т. д., но и явилась плодотворным матем. аппаратом (языком), с помощью к-рого были разработаны основы классич. механики. Начало классич. механики и сама возможность её построения были связаны с коперниканской революцией 16 в., в ходе к-рой гелиоцентрич. космос предстал как единая конструкция, без деления на качественно отличные небесный и земной уровни.

Дж. Бруно (G. Bruno) разрушил ограничивающую небесную сферу, поместил космос в бесконечное пространство, лишил его центра, заложил основу однородного бесконечного пространства, в рамках к-рого усилиями блестящей плеяды мыслителей [И. Кеплер (I. Kepler), Р. Декарт (R. Descartes), Г. Галилей (G. Galilei), И. Ньютон (I. Newton) и др.] была развита классич. . Уровня систематич. разработки она достигла в знаменитых "Математических началах натуральной философии" Ньютона, к-рый разграничивал в своей системе два типа П. и в.: абсолютные и относительные.

Абсолютное, истинное, матем. время само по себе и по самой своей сущности, без всякого отношения к чему-либо внешнему, протекает равномерно и иначе называется длительностью. Абс. пространство по самой своей сущности, безотносительно к чему бы то ни было внешнему, остаётся всегда одинаковым и неподвижным.

Такие П. и в. оказались парадоксальными с точки зрения здравого смысла и конструктивными на теоретич. уровне. Напр., концепция абс. времени парадоксальна потому, что, во-первых, рассмотрение течения времени связано с представлением времени как процесса во времени, что логически неудовлетворительно; во-вторых, трудно принять утверждение о равномерном течении времени, ибо это предполагает, что существует нечто контролирующее потока времени. Более того, если время рассматривается "без всякого отношения к чему-либо внешнему", то какой смысл может иметь предположение, что оно течёт неравномерно?

Если же подобное предположение бессмысленно, то какое значение имеет условие равномерности течения? Конструктивный смысл абсолютных П. и в. стал проясняться в последующих логико-матем. реконструкциях ньютоновой механики, к-рые получили своё относит. завершение в аналитич. механике Лагранжа [можно отметить также реконструкции Д"Аламбера (D"Alambert), У. Гамильтона (W. Hamilton) и др.], в к-рой был полностью элиминирован геометризм "Начал" и механика предстала как раздел анализа. В этом процессе на первый план стали выступать представления о законах сохранения, принципах симметрии, инвариантности и т. д., к-рые позволили рассмотреть классич. физику с единых концептуальных позиций. Была установлена связь осн. законов сохранения с пространственно-временной симметрией [С. Ли (S. Lie), F. Клейн (F. Klein), Э. Нётер (Е. Noether)]: сохранение таких фундам. физ. величин, как , импульс и угл. момент, выступает как следствие того, что П. и в. изотропны и однородны. Абсолютность П. и в., абс. характер длины и временных интервалов, а также абс. характер одновременности событий получили чёткое выражение в Галилея принципе относительности, к-рый можно сформулировать как принцип ковариантности законов механики относительно Галилея преобразований. Т. о., во всех инерциальных системах отсчёта равномерно течёт единое непрерывное абс. время и осуществляется абс. (т. е. одновременность событий не зависит от системы отсчёта, она абсолютна), основой к-рого могли выступать лишь дальнодействующие мгновенные силы - эта роль в ньютоновой системе отводилась тяготению (всемирного тяготения закон). Однако статус дальнодействия определяется не природой гравитации, а самой субстанциальной природой П. и в. в рамках механич. картины мира.

От абс. пространства Ньютон отличал протяжённость материальных объектов, к-рая выступает как их осн. свойство и есть пространство относительное. Последнее является мерой абс. пространства и может быть представлено как конкретных инерциальных систем отсчёта, находящихся в относит. движении. Соответственно и относит. время есть мера продолжительности, употребляемая в обыденной жизни вместо истинного матем. времени,- это , день, месяц, . Относит. П. и в. постигаемы чувствами, но они являются не перцептуальными, а именно эмпирич. структурами отношений между материальными объектами и событиями. Следует отметить, что в рамках эмпирич. фиксации были вскрыты нек-рые фундам. свойства П. и в., не отражённые на теоретич. уровне классич. механики, напр. трёхмерность пространства или необратимость времени.

Классич. механика до конца 19 в. определяла осн. направление науч. познания, к-рое отождествлялось с познанием механизма явлений, с редукцией любых явлений к механич. моделям и описаниям. Абсолютизации были подвергнуты и механич. представления о П. и в., к-рые были возведены на "Олимп априорности". В философской системе И. Канта (I. Kant) П. и в. стали рассматриваться как априорные (доопытные, врождённые) формы чувственного созерцания. Большинство философов и естествоиспытателей вплоть до 20 в. придерживались этих априористских воззрений, однако уже в 20-х гг. 19 в. были развиты разл. варианты неевклидовых геометрий [К. Гаусс (С. Gauss), H. И. Лобачевский, Я. Больяй (J. Bolyai) и др.], что связано с существенным развитием представлений о пространстве. Математиков давно интересовал вопрос о полноте аксиоматики евклидовой геометрии. В этом отношении наиб. подозрения вызывала аксиома о параллельных. Был получен поразительный результат: оказалось, что можно развить непротиворечивую систему геометрии, отказавшись от аксиомы о параллельных и допустив существование неск. прямых, параллельных данной и проходящих через одну точку. Представить себе такую картину крайне трудно, но учёные уже усвоили гносеологич. урок коперниканской революции - наглядность может быть связана с правдоподобностью, но не обязательно с истиной. Поэтому хотя Лобачевский и называл свою геометрию воображаемой, но поставил вопрос об эмпирич. определении евклидова или неевклидова характера физ. пространства. Б. Риман (В. Riemann) обобщил понятие пространства (куда как частные случаи вошли и всё множество неевклидовых пространств), положив в его основу представление о метрике,- пространство есть трёхмерное , на к-ром можно аналитически задать разл. аксиоматич. системы, и геометрия пространства определяется с помощью шести компонент метрического тензора, заданных как ф-ции координат. Риман ввёл понятие кривизны пространства, к-рое может иметь положит., нулевое и отрицат. значения. В общем случае пространства не обязательно должна быть постоянной, а может меняться от точки к точке. На таком пути были обобщены не только аксиома о параллельных, но и др. аксиомы евклидовой геометрии, что привело к развитию неархимедовых, непаскалевых и др. геометрий, в к-рых пересмотру были подвергнуты многие фундам. свойства пространства, напр. его непрерывность, и т. д. Обобщению было подвергнуто также представление о размерности пространства: была развита теория N -мерных многообразий и стало возможным говорить даже о бесконечномерных пространствах.

Подобная разработка мощного матем. инструментария, существенно обогатившего представления о пространстве, сыграла важную роль в развитии физики 19 в. (многомерные фазовые пространства, экстремальные принципы и т. д.), для к-рой были характерны значит. достижения и в концептуальной сфере: в рамках термодинамики получило явное выражение [У. Томсон (W. Thomson), Р. Клаузиус (R. Clausius) и др.] представление о необратимости времени - закон возрастания энтропии (второе начало термодинамики), а с электродинамикой Фарадея - Максвелла в физику вошли представления о новой реальности - , о существовании привилегиров. системы отсчёта, к-рая неразрывно связана с материализов. аналогом абс. пространства Ньютона, с неподвижным эфиром и т. д. Однако неизмеримо более плодотворными оказались матем. новации 19 в. в революц. преобразованиях физики 20 в.

Революция в физике 20 в. ознаменовалась разработкой таких неклассич. теорий (и соответствующих физ. исследовательских программ), как частная (специальная) и общая теории относительности (см. Относительности теория. Тяготение), квантовая теория поля, релятивистская и др., для к-рых характерно существенное развитие представлений о П. и в.

Теория относительности Эйнштейна была создана как движущихся тел, в основу к-рой были положены новый принцип относительности (относительность обобщалась с механич. явлений на явления эл.-магн. и оптические) и принцип постоянства и предельности скорости света с в пустоте, не зависящей от движения излучающего тела. Эйнштейн показал, что операциональные приёмы, с помощью к-рых устанавливается физ. содержание евклидова пространства в классич. механике, оказались неприменимыми к процессам, протекающим со скоростями, соизмеримыми со скоростью света. Поэтому он начал построение электродинамики движущихся тел с определения одновременности, используя световые сигналы для синхронизации часов. В теории относительности понятие одновременности лишено абс. значения и становится необходимым развить соответствующую теорию преобразования координат ( х, у, z )и времени (t ) при переходе от покоящейся системы отсчёта к системе, равномерно и прямолинейно движущейся относительно первой со скоростью u. В процессе развития этой теории Эйнштейн пришёл к формулировке Лоренца преобразований:

Была выяснена необоснованность двух фундам. положений о П. и в. в классич. механике: промежуток времени между двумя событиями и расстояние между двумя точками твёрдого тела не зависят от состояния движения системы отсчёта. Поскольку одинакова во всех системах отсчёта, то от этих положений приходится отказаться и сформировать новые представления о П. и в. Если преобразования Галилея классич. механики основывались на допущении существования операциональных сигналов, распространяющихся с бесконечной скоростью, то в теории относительности операциональные световые сигналы обладают конечной макс. скоростью с и этому соответствует новый сложения скоростей закон, в к-ром в явной форме запечатлена специфика предельно быстрого сигнала. Соответственно сокращение длины и замедление времени носят не динамич. характер [как это представляли X. Лоренц (Н. Lorentz) и Дж. Фицджеральд (G. Fitzgerald) при объяснении отрицат. результата Майкелъсона опыта] и не являются следствием специфики субъективного наблюдения, а выступают элементами новой релятивистской концепции П. и в.

Абс. пространство, единое время для разл. систем отсчёта, абс. скорость и т. д. потерпели фиаско (даже от эфира отказались), были выдвинуты их относит. аналоги, что, собственно, и определило назв. теории Эйнштейна - "теория относительности". Но новизна пространственно-временных представлений этой теории не исчерпывалась выявлением относительности длины и временного промежутка,- не менее важным было выяснение равноправности пространства и времени (они равноправно входят в преобразования Лоренца), а в дальнейшем - и инвариантности пространственно-временного интервала. Г . Минковский (Н. Minkowski) вскрыл органич. взаимосвязь П. и в., к-рые оказались компонентами единого четырёхмерного континуума (см. Минковского пространство-время). Критерий объединения относит. свойств П. и в. в абс. четырёхмерное многообразие характеризуется инвариантностью четырёхмерного интервала (ds): ds 2 = c 2 dt 2 - dx 2 - dy 2 - dz 2 . Соответственно Минковский вновь переносит акцент с относительности на абсолютность ("постулат абс. мира"). В свете этого положения становится ясным несостоятельность часто встречающегося утверждения, что при переходе от классич. физики к частной теории относительности произошла смена субстанциальной (абсолютной) концепции П. и в. на реляционную. В действительности имел место иной процесс: на теоретич. уровне произошла смена абс. пространства и абс. времени Ньютона на столь же абсолютное четырёхмерное пространственно-временное многообразие Минковского (это субстанциальная концепция), а на эмпирич. уровне на смену относит. пространству и относит. времени механики Ньютона пришли реляционное П. и в. Эйнштейна (реляционная модификация атрибутивной концепции), основанные на совершенно иной эл.-магн. операциональности.

Частная теория относительности была лишь первым шагом, ибо новый принцип относительности был приложим лишь к инерциальным системам отсчёта. След. шагом была попытка Эйнштейна распространить этот принцип на системы равноускоренные и вообще на весь круг неинерциальных систем отсчёта - так родилась . По Ньютону, неинерци-альные системы отсчёта движутся ускоренно относительно абс. пространства. Ряд критиков концепции абс. пространства [напр., Э. Max (E. Mach)] предложили рассматривать такое ускоренное по отношению к горизонту удалённых звёзд. Тем самым наблюдаемые массы звёзд становились источником инерции. Эйнштейн дал иное толкование этому представлению, исходя из принципа эквивалентности, согласно к-рому неинерциальные системы локально неотличимы от поля тяготения. Тогда если обусловлена массами Вселенной, а поле сил инерции эквивалентно гравитац. полю, проявляющемуся в геометрии пространства-времени, то, следовательно, массы определяют и саму геометрию. В этом положении чётко обозначился существенный в трактовке проблемы ускоренного движения: принцип Маха об относительности инерции трансформирован Эйнштейном в принцип относительности геометрии пространства-времени. Принцип эквивалентности носит локальный характер, но он помог Эйнштейну сформулировать осн. физ. принципы, на к-рых базируется новая теория: гипотезы о геометрич. природе гравитации, о взаимосвязи геометрии пространства-времени и материи. Кроме этого, Эйнштейн выдвинул ряд матем. гипотез, без к-рых невозможно было бы вывести гравитац. ур-ния: пространство-время четырёхмерно, его структура определяется симметричным метрич. тензором, ур-ния должны быть инвариантными относительно группы преобразований координат. В новой теории пространство-время Минковского обобщается в метрику искривлённого пространства-времени Римана: где - квадрат

расстояния между точками и - дифференциалы координат этих точек, а - нек-рые ф-ции координат, составляющие фундам, метрич. , и определяют геометрию пространства-времени. Принципиальная новизна подхода Эйнштейна к пространству-времени заключается в том, что ф-ции являются не только компонентами фундам. метрич. тензора, ответственного за геометрию пространства-времени, но одновременно и потенциалами гравитац. поля в осн. ур-нии общей теории относительности: = -(8pG /с 2), где - тензор кривизны, R - скалярная кривизна,- метрич. тензор, - тензор энергии-импульса, G - гравитационная постоянная. В этом ур-нии выявлена связь материи с геометрией пространства-времени.

Общая теория относительности получила блестящее эмпирич. подтверждение и послужила основой последующего развития физики и космологии на базе дальнейшего обобщения представлений о П. и в., выяснения их сложной структуры. Во-первых, сама операция геометризации тяготения породила целое направление в физике, связанное с геометризованными едиными теориями поля. Осн. идея: если искривление пространства-времени описывает гравитацию, то введение более обобщённого риманова пространства с повышенной размерностью, с кручением, с многосвязностью и т. д. даст возможность для описания иных полей (т. н. градиент-но-инвариантная теория Вейля, пятимерная Калуцы - Клейна теория и др.). В 20-30-е гг. обобщения пространства Римана затрагивали в основном метрич. свойства пространства-времени, однако в дальнейшем пошла уже о пересмотре топологии [геометродинамика Дж. Уилера (J. Wheeler)], а в 70-80-е гг. физики пришли к выводу, что калибровочные поля глубоко связаны с геометрич. концепцией связности на расслоённых пространствах (см. Расслоение) - на этом пути достигнуты впечатляющие успехи, напр. в единой теории эл.-магн. и слабого взаимодействий - теории электрослабых взаимодействий Вайнберга - Глэшоу - Салама (S. Weinberg, Sh. L.Glashaw, A. Salam), к-рая построена в русле обобщения квантовой теории поля.

Общая теория относительности является основой совр. релятивистской космологии. Непосредственное применение общей теории относительности ко Вселенной даёт неимоверно сложную картину космич. пространства-времени: материя во Вселенной сосредоточена в основном в звёздах и их скоплениях, к-рые распределены неравномерно и соответствующим образом искривляют пространство-время, оказывающееся неоднородным и неизотропным. Это исключает возможность практич. и матем. рассмотрения Вселенной как целого. Однако ситуация меняется по мере продвижения к крупномасштабной структуре пространства-времени Вселенной: скоплений галактик оказывается в среднем изотропным, характеризуется однородностью и т. д. Всё это оправдывает введение космологич. постулата об однородности и изотропности Вселенной и, следовательно, понятия мирового П. и в. Но это не абс. П. и в. Ньютона, к-рые, хотя тоже были однородными и изотропными, но в силу евклидова характера имели нулевую кривизну. В применении к неевклидову пространству условия однородности и изотропности влекут постоянство кривизны, и здесь возможны три модификации такого пространства: с нулевой, отрицат. и положит. кривизной. Соответственно в космологии был поставлен очень важный вопрос: конечна или бесконечна Вселенная?

Эйнштейн столкнулся с этой проблемой при попытке построить первую космологич. модель и пришёл к выводу, что общая теория относительности несовместима с допущением бесконечности Вселенной. Он разработал конечную и статичную модель Вселенной - сферич. Вселенная Эйнштейна. Речь идёт не о привычной и наглядной сфере, к-рую можно часто наблюдать в обыденной жизни. Напр., мыльные пузыри или мячи сферичны, но они являются образами двумерных сфер в трёхмерном пространстве. А Вселенная Эйнштейна представляет собой трёхмерную сферу - замкнутое в себе неевклидово трёхмерное пространство. Оно является конечным, хотя и безграничным. Такая модель существенно обогащает наши представления о пространстве. В евклидовом пространстве бесконечность и неограниченность были единым нерасчленённым понятием. На самом деле это разные вещи: бесконечность является метрич. свойством, а неограниченность - топологическим. У Вселенной Эйнштейна нет границ, и она является всеобъемлющей. Более того, сферич. Вселенная Эйнштейна конечна в пространстве, но бесконечна во времени. Но, как выяснилось, стационарность вступала в противоречие с общей теорией относительности. Стационарность пытались спасти разл. методами, что повлекло развитие ряда оригинальных моделей Вселенной, однако решение было найдено на пути перехода к нестационарным моделям, к-рые впервые были развиты А. А. Фридманом. Метрич. свойства пространства оказались изменяющимися во времени. В космологию вошла диалектич. идея развития. Выяснилось, что Вселенная расширяется [Э. Хаббл (Е. Hubble)]. Это вскрыло совершенно новые и необычные свойства мирового пространства. Если в классич. пространственно-временных представлениях разбегание галактик интерпретируется как их движение в абс. ньютоновом пространстве, то в релятивистской космологии это явление оказывается результатом нестационарности метрики пространства: не галактики разлетаются в неизменном пространстве, а расширяется само пространство. Если экстраполировать это расширение "вспять" во времени, то получается, что наша Вселенная была "стянута в точку" прибл. 15 млрд. лет назад. Совр. наука не знает, что происходило в этой нулевой точке t = О, когда материя была спрессована в критич. состояние с бесконечной плотностью и бесконечной была кривизна пространства. Бессмысленно задавать вопрос, что было до этой нулевой точки. Такой вопрос осмыслен D применении к ньютонову абс. времени, а в релятивистской космологии работает иная модель времени, в к-рой в момент t =0 возникает не только стремительно расширяющаяся (или раздувающаяся) Вселенная (Большой ), но и само время. Совр. всё ближе подходит в своём анализе к "нулевому моменту", реконструируются реалии, имевшие место через секунду и даже доли секунды после Большого взрыва. Но это уже область глубокого микромира, где не работает классич. (неквантовая) релятивистская космология, где вступают в силу квантовые явления, с к-рыми связан другой путь развития фундам. физики 20 в. со своими специфич. представлениями о П. и в.

В основе этого пути развития физики лежало открытие М. Планком (М. Planck) дискретности процесса испускания света: в физике появился новый " " - атом действия, или , эрг·с, к-рый стал новой мировой константой. Мн. физики [напр., А. Эддингтон (A. Eddington)] с момента появления кванта подчёркивали загадочность его природы: он неделим, но не имеет границ в пространстве, он как бы заполняет собой всё пространство, и не ясно, какое место следует отнести ему в пространственно-временной схеме мироздания. Место кванта было чётко выяснено в квантовой механике, вскрывшей закономерности атомного мира. В микромире становится бессодержательным понятие пространственно-временной траектории частицы (обладающей как корпускулярными, так и волновыми свойствами), если под траекторией понимается классич. образ линейного континуума (см. Причинность). Поэтому в первые годы развития квантовой механики её создатели делали осн. упор на вскрытие того факта, что она не даёт описания движения атомных частиц в пространстве и времени и ведёт к полному отказу от привычного пространственно-временного описания. Выявилась необходимость пересмотра пространственно-временных представлений и лапласов-ского детерминизма классич. физики, ибо квантовая механика является принципиально статистич. теорией и ур-ние Шрёдингера описывает амплитуду нахождения частицы в данной пространственной области (расширяется и само понятие пространственных координат в квантовой механике, где они изображаются операторами). В квантовой механике было вскрыто наличие принципиального ограничения точности при измерениях на малых расстояниях параметров микрообъектов, обладающих энергией порядка той, к-рая вносится в процессе измерения. Это обусловливает необходимость наличия двух дополняющих друг друга эксперим. установок, к-рые в рамках теории формируют два дополнительных описания поведения микрообъектов: пространственно-временное и импульс-но-энергетическое. Любое повышение точности определения пространственно-временной локализации квантового объекта сопряжено с повышением неточности в определении его импульсно-энергетич. характеристик. Неточности измеряемых физ. параметров образуют неопределённостей соотношения: . Важно, что указанная дополнительность содержится и в самом матем. формализме квантовой механики, определяя дискретность фазового пространства.

Квантовая механика была положена в основу бурно развивающейся физики элементарных частиц, в к-рой представления о П. и в. столкнулись с ещё большими трудностями. Оказалось, что микромир является сложной многоуровневой системой, на каждом уровне к-рой господствуют специфич. виды взаимодействий и характерные специфич. свойства пространственно-временных отношений. Область доступных в эксперименте микроскопич. интервалов условно можно поделить на четыре уровня: уровень молекулярно-атомных явлений (10 -6 см < Dx < 10 -11 см); уровень релятивистских квантовоэлектродинамич. процессов; уровень элементарных частиц; уровень ультрамалых масштабов (Dx 8 10 -16 см и Dt 8 10 -26 с - эти масштабы доступны в опытах с космич. лучами). Теоретически можно ввести и значительно более глубокие уровни (лежащие далеко за пределами возможностей не только сегодняшних, но и завтрашних экспериментов), с к-рыми связаны такие концептуальные новации, как флуктуация метрики, изменения топологии, "пенообразная структура" пространства-времени на расстояниях порядка планковской длины (Dx 10 -33 см). Однако достаточно решительный пересмотр представлений о П. и в. потребовался на уровнях, вполне доступных совр. эксперименту при развитии физики элементарных частиц. Уже столкнулась со многими трудностями именно потому, что была связана с заимствованными из классич. физики понятиями, основанными на концепции пространственно-временной непрерывности: точечность заряда, локальность поля и т. д. Это повлекло за собой существенные осложнения, связанные е бесконечными значениями таких важных величин, как , собств. энергия электрона и т. д. (ультрафиолетовые расходимости). Эти трудности пытались преодолеть введением в теорию представления о дискретном, квантованном пространстве-времени. Первые разработки 30-х гг. (В. А. Ам-барцумян, Д. Д. Иваненко) оказались неконструктивными, ибо не удовлетворяли требованию релятивистской инвариантности, а трудности квантовой электродинамики были решены с помощью процедуры перенормировки: малость константы эл.-магн. взаимодействий (а = 1/137) позволила использовать ранее разработанную теорию возмущений. Но в построении квантовой теории др. полей (слабого и сильного взаимодействий) эта процедура оказалась не работающей, и выход стали искать на пути ревизии концепции локальности поля, его линейности и т. д., что опять наметило возврат к идее существования "атома" пространства-времени. Это направление получило новый импульс в 1947, когда X. Снайдер (Н. Snyder) показал возможность существования релятивистски инвариантного пространства-времени, в к-ром содержится естеств. единица длины l 0 . Теория квантованного П. и в. получила развитие в работах В. Л. Авербаха, Б. В. Медведева, Ю. А. Гольфанда, В. Г. Кадышевского, Р. М. Мир-Касимова и др., к-рые стали приходить к выводу, что в природе существует фундаментальная длина l 0 ~ 10 -17 см. Дж. Чу (G. Chew), Э. Циммерман (Е. Zim-mermann) и др. экстраполировали представление о дискретности пространства-времени в гипотезу о макро-сконич. природе П. и в. Речь стала идти не о специфике дискретной структуры П. и в. в физике элементарных частиц, а о наличии некой границы в микромире, за к-рой вообще нет ни пространства, ни времени. Весь этот комплекс идей продолжает привлекать внимание исследователей, но существенный прогресс был достигнут Ч. Янгом (Ch. Yang) и Р. Миллсом (R. Mills) путём неабелева обобщения квантовой теории поля ( Янга - Миллса поля), в рамках к-рого удалось не только реализовать процедуру , но и приступить к реализации программы Эйнштейна - к построению единой теории поля. Создана единая теория электрослабых взаимодействий, к-рая в пределах расширенной симметрии U (1) x SU (2) x SU (3) c объединяется с квантовой хромодинамикой (теорией сильных взаимодействий). В этом подходе произошёл синтез ряда оригинальных идей и представлений, напр. гипотезы кварков, цветовой симметрии кварков SU(3) c , симметрии слабых и эл.-магн. взаимодействий SU (2) x U (1), локально калибровочного и неабелевого характера этих симметрии, существования спонтанно нарушенной симметрии и перенормируемости. Причём требование локальности калибровочных преобразований устанавливает ранее отсутствующую связь между динамич. сим-метриями и пространством-временем. В настоящее время разрабатывается теория, объединяющая все фундам. физ. взаимодействия, включая гравитационные. Однако выяснилось, что в этом случае речь идёт о пространствах 10, 26 и даже 605 размерностей. Исследователи надеются, что чрезмерный избыток размерностей в процессе компактификации удастся "замкнуть" в области планковских масштабов и в теорию макромира войдёт

лишь привычное четырёхмерное пространство-время. Что же касается вопросов о структуре пространства-времени глубокого микромира или о первых мгновениях Большого взрыва, то ответы на них будут найдены лишь в физике 3-го тысячелетия.

Лит.: Фок В. А., Теория пространства, времени и тяготения, 2 изд., М., 1961; Пространство и время в современной физике, К., 1968; Грюнбауи А., Философские проблемы пространства и времени, пер. с англ., М., 1969; Чуди-нов Э. М., Пространство и время в современной физике, М., 1969; Блохинцев Д. И., Пространство и время в микромире, 2 изд., М., 1982; Мостепаненко А. М., Пространство-время и физическое познание, М., 1975; Хокинг С., Эллис Д ж.. Крупномасштабная структура пространства-времени, пер. с англ., М., 1977; Девис П., Пространство и время в современной картине Вселенной, пер. с англ., М., 1979; Барашенков B.C., Проблемы субатомного пространства и времени, М., 1979; Ахундов М. Д., Пространство и время в физическом познании, М., 1982; Владимиров Ю. С., Мицкевич Н. В., Xорски А., Пространство, время, - всеобщие формы бытия материи, её важнейшие атрибуты. В мире нет материи, не обладающей пространственно временными свойствами, как не существует П. и в. самих по себе, вне материи или независимо от неё. Пространство есть форма бытия… … Философская энциклопедия


  • Марк Ван Раамсдонк (Mark Van Raamsdonk) физик, Университет Британской Колумбии, Ванкувер, Канада Представьте себе, однажды вы просыпаетесь и понимаете, что живете внутри компьютерной игры. Если это так, тогда все вокруг, весь трехмерный мир - это всего лишь иллюзия, информация, закодированная на двумерной поверхности.

    Это сделало бы нашу Вселенную с ее тремя пространственными измерениями, своего рода голограммой, источник которой находится в низших измерениях.

    Этот «голографический принцип» довольно необычен для теоретической физики. Но Ван Раамсдонк является членом небольшой группы исследователей, которые считают, что это вполне нормально. Просто ни один из столпов современной физики: ни общая теория относительности, которая описывает гравитацию как искривление пространства и времени, ни квантовая механика, не могут объяснить существование пространства и времени. Даже теория струн, описывающая элементарные нити энергии, не может этого сделать.

    Ван Раамсдонк и его коллеги убеждены, что необходимо дать конкретное представление понятий пространства и времени, пусть даже такое во многом нелепое, как голография. Они утверждают, что радикальное переосмысление реальности является единственным способом объяснить, что происходит, когда бесконечно плотная сингулярность в центре черной дыры искажает пространство-время до неузнаваемости. Оно так же поможет объединить квантовую теорию и общую теорию относительности, а этого теоретики пытаются добиться уже не одно десятилетие.

    Все наши опыты свидетельствуют о том, что вместо двух полярных концепций реальности, должна быть найдена одна всеобъемлющая теория.

    Гравитация как термодинамика

    Но ради чего все эти попытки? И как найти то самое «сердце» теоретической физики?

    Ряд поразительных открытий, сделанных в начале 1970-х годов, натолкнули на мысль, что квантовая механика и гравитация тесно связаны с термодинамикой.

    В 1974 году Стивен Хокинг из Кембриджского университета в Великобритании показал, что квантовые эффекты в космосе вокруг черной дыры могут привести к выбросу излучения высокой температуры. Другие физики быстро отметили, что это явление является довольно общим. Даже в совершенно пустом пространстве астронавт, испытывающий ускорение, будет ощущать вокруг себя тепло. Эффект слишком мал, чтобы его можно было заметить в случае с космическим кораблем, но само по себе предположение казалось фундаментальным. И если квантовая теория и общая теория относительности правильны (что подтверждается экспериментами), то излучение Хокинга действительно существует.

    За этим последовало второе ключевое открытие. В стандартной термодинамике объект может излучать тепло только за счет уменьшения энтропии, меры количества квантовых состояний внутри него. То же самое и с черными дырами; еще до появления доклада Хокинга в 1974 году Джейкоб Бекенштейн (Jacob Bekenstein), который в настоящее время работает в Еврейском университете в Иерусалиме, предположил, что черные дыры обладают энтропией. Но есть разница. В большинстве объектов энтропия пропорциональна числу атомов объекта, а значит и объему. Но энтропия черной дыры пропорциональна площади ее горизонта событий, границы, из которой даже свет не может вырваться. Как будто в этой поверхности закодирована информация о том, что внутри (прям как двумерные голограммы кодируют трехмерное изображение).

    В 1995 году Тед Джекобсон (Ted Jacobson), физик из Мэрилендского университета в Колледж-Парке, скомбинировал эти два открытия и предположил, что каждая точка в пространстве находится на крошечном «горизонте черной дыры», который также подчиняется пропорции энтропия-площадь. Даже уравнения Эйнштейна удовлетворяют этому условию (естественно, физик оперировал термодинамическими понятиями, а не пространством-временем).

    «Возможно, это позволит нам узнать больше о происхождении гравитации», - говорит Якобсон. Законы термодинамики являются статистическими, поэтому его результат позволяет предположить, что гравитация - явление также статистическое (макроскопическое приближение к невидимым компонентам пространства-времени).

    В 2010 году эта идея шагнула еще дальше. Эрик Верлинде (Erik Verlinde), специалист по теории струн из университета Амстердама, предположил, что статистическая термодинамика пространственно-временных составляющих могла дать толчок закону Ньютона о гравитационном притяжении.

    В другой работе Тану Падманабан (Thanu Padmanabhan), космолог из Межвузовского центра астрономии и астрофизики в Пуне, показал, что уравнения Эйнштейна можно переписать в форме, идентичной законам термодинамики, как и многие другие альтернативные теории тяжести. В настоящее время Падманабан работает над обобщением термодинамического подхода, пытаясь объяснить происхождение и величину темной энергии, таинственной космической силы, ускоряющей расширение Вселенной.

    Подобные идеи проверить эмпирически крайне сложно, но не невозможно. Чтобы понять, состоит ли пространство-время из отдельных компонентов, можно провести наблюдение за задержкой фотонов высоких энергий, путешествующих к Земле от далеких космических объектов, таких как сверхновые и γ-всплески.

    Сверхновые - звезды, блеск которых увеличивается на десятки звездных величин за сутки. В течение малого периода времени взрывающаяся сверхновая может быть ярче, чем все звезды ее родной галактики.
    Существует два типа cверхновых: Тип I и Тип II. Считается, что Тип II является конечным этапом эволюции одиночной звезды с массой М*=10±3Мsun. Тип I связан, по-видимому, с двойной системой, в которой одна из звезд белый карлик, на который идет аккреция со второй звезды.

    Гамма-всплески - выбросы гамма-излучения, связанные с самыми высокоэнергетическими взрывами. Изначальное гамма-излучение испускается в течение времени от десятка миллисекунд до нескольких минут, за ним следует послесвечение на более длинных волнах.
    Большая часть гамма-всплесков связана с образованием нейтронных звезд и черных дыр после взрывов сверхновых, самые короткие всплески возникают при столкновении двух нейтронных звезд.

    В апреле Джованни Амелино-Камелия (Giovanni Amelino-Camelia), исследователь квантовой гравитации из Римского Университета, и его коллеги обнаружили намеки именно на подобные задержки фотонов, идущих от γ-всплеска. Как говорит Амелино-Камелия, результаты не являются окончательными, но группа планирует расширить свои поиски, чтобы зафиксировать время движения нейтрино высоких энергий, создаваемых космическими событиями.

    Джованни Амелино-Камелия (Giovanni Amelino-Camelia) исследователь квантовой гравитации, Римский Университет Если теория не может быть проверена, то наука для меня не существует. Она превращается в религиозные убеждения, которые не представляют для меня никакого интереса.

    Другие физики концентрируются на лабораторных испытаниях. В 2012 году, например, исследователи из Венского университета и Имперского колледжа Лондона провели настольный эксперимент, в котором микроскопические зеркала перемещаются при помощи лазеров. Они утверждали, что пространство-время в Планковском масштабе приведет к изменению света, отраженного от зеркала.

    Петлевая квантовая гравитация

    Даже если термодинамический подход верен, он все равно ничего не говорит о фундаментальных составляющих пространства и времени. Если пространство-время представляет собой ткань, то каковы ее нити?

    Один из возможных ответов вполне буквален. Теория петлевой квантовой гравитации, которую выдвинул в середине 1980-х Аштекар и его коллеги, описывает ткань пространства-времени как растущую паутину из нитей, которые несут информацию о квантованных площадях и объемах областей, через которые они проходят. Отдельные нити сети должны, в конечном итоге, образовывать петли. Отсюда и название теории. Правда, она не имеет ничего общего с гораздо более известной теорией струн. Последние движутся вокруг пространства-времени, тогда как нити и есть пространство-время, а информация, которую они несут, определяет форму пространственно-временной ткани вокруг них.

    Петли - это квантовые объекты, однако, они также определяют минимальную единицу площади и, во многом, таким же образом, как и обычная квантовая механика определяют минимальную энергию электрона в атоме водорода. Попытайтесь вставить дополнительные нити меньшей площади, и они просто отсоединятся от остальной сети и не смогут больше связаться ни с чем.

    Они как бы выпадают из пространства-времени.

    Петлевая квантовая гравитация
    На видео показано, как пространство развивается в петлевой квантовой гравитации. Цвета граней тетраэдров указывают на масштаб области в данной точке в конкретный момент времени.

    Минимальная площадь хороша тем, что петлевая квантовая гравитация не может сжать бесконечное количество кривых в бесконечно малую точку. Это означает, что она не может привести к тем особенностям, когда уравнения Эйнштейна рушатся: в момент Большого Взрыва или в центре черных дыр.

    Воспользовавшись этим фактом, в 2006 году Аштекар и его коллеги представили серию моделей, в которых повернули время вспять и продемонстрировали то, что было до Большого взрыва. По мере приближения к фундаментальному пределу размера, продиктованному петлевой квантовой гравитацией, сила отталкивания раскрыла и зафиксировала сингулярность открытой, превратив ее в туннель к космосу, предшествующему нашему.

    В этом году Родольфо Гамбини (Rodolfo Gambini) из Республиканского Университета Уругвая в Монтевидео и Хорхе Пуйин (Jorge Pullin) из Университета Луизианы в Батон-Руж представили аналогичные модели, но уже для черной дыры. Если двигаться глубоко в сердце черной дыры, то можно обнаружить не сингулярность, а тонкий пространственно-временной туннель, ведущий в другую часть космоса.

    Абэй Аштекар (Abhay Ashtekar) физик, Университет штата Пенсильвания, Юниверсити-Парк, штат Пенсильвания Очень важно избавиться от проблемы сингулярности.

    Петлевая квантовая гравитация не является полноценной теорией, так как она не содержит никаких других сил. Кроме того, физикам еще предстоит показать, как «получилось» обычное пространство-время из информационной сети. Но Даниэле Орити (Daniele Oriti), физик из Института гравитационной физики Макса Планка в Гольме, надеется найти вдохновение в работе ученых, представивших экзотические фазы материи, которая совершает переходы, описанные квантовой теорией поля. Орити и его коллеги ищут формулы для описания того, как Вселенная могла бы проходить аналогичные фазы от набора дискретных петель к плавному и непрерывному пространству-времени.

    Причинный ряд

    Разочарования заставили некоторых исследователей придерживаться минималистской программы, известной как теория причинного ряда. Основанная Рафаэлем Соркиным (Rafael Sorkin), теория постулирует, что строительные блоки пространства-времени - это простые математические точки, связанные либо с прошлым, либо с будущим.

    Это «скелетное» представление причинности, которая утверждает, что более раннее событие может повлиять на более позднее, но не наоборот. В результате сеть как растущее дерево превращается в пространство-время.

    Рафаэль Соркин (Rafael Sorkin) физик, Институт Теоретической Физики «Периметр» в Ватерлоо, Канада Пространство появляется из точки так же, как температура выходит из атома. Нет смысла говорить об одном атоме, значение заключено в их большом количестве.

    В конце 1980-х Соркин использовал эту структуру, чтобы представить число точек, которое должна включать Вселенная, и пришел к выводу, что они должны быть причиной малой внутренней энергии, которая ускоряет расширение Вселенной. Несколько лет спустя открытие темной энергии подтвердило его догадку. "Люди часто думают, что квантовая гравитация не может сделать проверяемых предсказаний, но здесь именно тот случай", - говорит Джо Хенсон, исследователь квантовой гравитации из Имперского колледжа в Лондоне. " Если значение темной энергии было бы больше или его не было бы совсем, тогда теория причинного ряда была бы исключена".

    Едва ли найдутся доказательства, однако теория причинного ряда предложила несколько других возможностей, которые можно было бы проверить. Некоторые физики обнаружили, что гораздо удобнее использовать компьютерное моделирование. Идея, появившаяся в начале 1990-х, состоит в аппроксимации неизвестных фундаментальных составляющих крошечными кусочками обычного пространства-времени, оказавшимися в бурлящем море квантовых флуктуаций, и наблюдении за тем, как эти кусочки спонтанно соединяются в более крупные структуры.

    Рената Лолл (Renate Loll) Первые попытки аппроксимации неизвестных фундаментальных составляющих крошечными кусочками обычного пространства-времени были неудачными. Строительные блоки пространства-времени были простыми гиперпирамидами, четырехмерные прототипы трехмерных тетраэдров, а предполагаемое соединение позволило им свободно комбинироваться. В результате получилась серия странных "вселенных", в которых было слишком много измерений (или слишком мало), часть из них существовала сама по себе, а часть разрушалась. Это была попытка показать то, что нас окружает

    Причинная динамическая триангуляция

    Причинная динамическая триангуляция использует только два аспекта: пространство и время. На видео показаны двумерные вселенные, порожденные частицей пространства, самоорганизованными в соответствии с квантовыми правилами. Каждый цвет представляет собой срез Вселенной в определенный момент времени после Большого взрыва, который изображен как крошечный черный шар.

    Но, как утверждают Соркин, Лолл и ее коллеги, с добавлением причинности все изменилось.

    Рената Лолл (Renate Loll) физик, Университет Неймегена, Нидерланды В конце концов, измерение времени не похоже на три измерения пространства. Мы не можем путешествовать назад и вперед во времени, поэтому визуализация была изменена с учетом причинности. Тогда мы обнаружили, что пространственно-временные кусочки начали собираться в четырехмерные вселенные со свойствами, подобными нашей

    Интересно, что моделирование также намекает на то, что вскоре после Большого взрыва Вселенная прошла через младенческую фазу только с двумя измерениями: одно пространственное и одно временное. Это заключение было сделано независимо от попыток получить уравнения квантовой гравитации, и даже независимо от тех, кто полагает, что появление темной энергии является признаком того, что в нашей Вселенной появляется четвертое пространственное измерение.

    Голография

    Между тем, Ван Раамсдонк предложил совсем другое представление о появлении пространства-времени, основанное на голографическом принципе. Голограммоподобный принцип того, что у черных дыр вся энтропия находится на поверхности, был впервые представлен Хуаном Малдасеной (Juan Maldacena), приверженцем теории струн из Института Передовых Исследований в Принстоне. Он опубликовал свою модель голографической Вселенной в 1998 году. В этой модели трехмерный «интерьер» Вселенной включал в себя струны и черные дыры, управляемые исключительно силой тяжести, в то время как ее двумерная граница имела элементарные частицы и поля, подчинявшиеся обычным квантовым законам, а не гравитации.

    Гипотетические жители трехмерного пространства никогда бы не увидели эту границу, потому что она была бы бесконечно далеко.

    Но это никак не влияет на математику: все, что происходит в трехмерной Вселенной может быть одинаково хорошо описано уравнениями в случае двумерной границы, и наоборот.

    В 2010 году Ван Раамсдонк объяснил запутывание квантовых частиц на границе. Это означает, что данные, полученные в одной части, неизбежно скажутся на другой. Он обнаружил, что если каждая частица запутывается между двух отдельных областей границы, она неуклонно движется к нулю, поэтому квантовая связь между ними исчезает, трехмерное пространство начинает постепенно делиться (как клетка) до тех пор, пока не порвется последняя связь.

    Таким образом, трехмерное пространство делится снова и снова, в то время как двумерная граница остается «на связи». Ван Раамсдонк заключил, что трехмерная вселенная идет бок о бок с квантовой запутанностью на границе. Это означает, что, в некотором смысле, квантовая запутанность и пространство-время - это одно и то же.

    Или, как выразился Малдасена: «Это говорит о том, что квант - явление фундаментальное, а пространство-время зависит от него».

    Онтологический статус пространства и времени стал предметом философского и научного анализа в субстанциальной и реляционной концепциях, в которых рассматривается соотношение времени, пространства и материи.

    В субстанциальной (от лат. substantia – то, что лежит в основе; сущность) концепции пространство и время трактовались как самостоятельные явления, существующие наряду с материей и независимо от нее. Соответственно отношение между пространством, временем и материей представлялось как отношение между видами самостоятельных субстанций. Это вело к выводу о независимости свойств пространства и времени от характера протекающих в них материальных процессов.

    Родоначальником субстанциального подхода, считают Демокрита, который полагал, что существуют только атомы и пустота, отождествляемая им с пространством.

    Свое всестороннее развитие и завершение субстанциальная концепция пространства и времени получила у И. Ньютона и в классической физике в целом.

    Понятия пространства и времени, выработанные в классической физике, являются результатом теоретического анализа механического движения. Ньютон четко различал два типа времени и пространства – абсолютное и относительное.

    Понятия "пространство" и "время" были определены И. Ньютоном в строгом соответствии с той методологической установкой, которая была принята формирующейся опытной наукой Нового времени, а именно – познание сущности (законов природы) через явления. Он четко различал два типа времени и пространства – абсолютное и относительное, и дал им следующие определения.

    "Абсолютное, истинное, математическое время само по себе и по своей сущности, без всякого отношения к чему- либо внешнему, протекает равномерно и иначе называется длительностью.

    Относительное, кажущееся, или обыденное, время есть или точная, или изменчивая, постигаемая чувствами, внешняя мера продолжительности, употребляемая в обыденной жизни вместо истинного математического времени, как-то: час, день, месяц, год.

    Абсолютное пространство по своей сущности, безотносительно к чему бы то ни было внешнему, остается всегда одинаковым и неподвижным.

    Относительное пространство есть мера или какая- либо ограниченная подвижная часть, которая определяется нашими чувствами по положению его относительно некоторых тел и которое в обыденной жизни принимается за пространство неподвижное" .

    Чем вызвано это различение?

    Прежде всего оно связано с особенностями теоретического и эмпирического уровней познания пространства и времени.

    На эмпирическом уровне пространство и время предстают как относительные, т.е. связанные с конкретными физическими процессами и их восприятием на уровне чувств.

    На теоретическом уровне абсолютные пространство и время представляют собой идеализированные объекты, у которых выделяется только одна характеристика: для времени – быть "чистой длительностью", а для пространства быть "чистой протяженностью".

    Понятия абсолютного пространства и абсолютного времени у Ньютона являются необходимым теоретическим основанием законов движения. В дальнейшем они были онтологизированы, т.е. наделены бытием вне теоретической системы механики, и стали рассматриваться как самостоятельные сущности, не зависящие ни друг от друга, ни от материи.

    В реляционной (от лат. relatio – отношение) концепции пространство и время понимаются не как самостоятельные сущности, а как системы отношений, образуемых взаимодействующими материальными объектами. Вне этой системы взаимодействий пространство и время считались несуществующими. В этой концепции пространство и время выступают как общие формы координации материальных объектов и их состояний. Соответственно допускалась и зависимость свойств пространства и времени от характера взаимодействия материальных систем. В философии реляционная концепция времени в Античности разрабатывалась Аристотелем, а в Новое время Г. Лейбницем, которые полагали, что пространство и время имеют исключительно относительный характер и являются: пространство – порядком сосуществования фрагментов реальности, а время – последовательностью сосуществования фрагментов реальности.

    В физике реляционная концепция пространства и времени была представлена специальной теории относительности (1905) и общей теории относительности (1916).

    А. Эйнштейн при разработке своей теории опирался на идеи физика Г. А. Лоренца (1853–1928), физика и математика А. Пуанкаре (1854–1912), математика Г. Минковского (1864–1909). Если в механике Ньютона пространство и время не были связаны между собой и носили абсолютный характер, т.е. были неизменными в разных системах отсчета, то в специальной теории относительности они становятся относительными (зависят от системы отсчета) и взаимосвязанными, образуя пространственно-временной континуум, или единое четырехмерное пространство-время.

    Общая теория относительности разрабатывалась А. Эйнштейном в 1907–1916 гг. В своей теории он пришел к выводу, что реальное пространство является неевклидовым, что в присутствии создающих гравитационные поля тел количественные характеристики пространства и времени становятся другими, нежели в отсутствие тел и создаваемых ими полей. Пространство-время является неоднородным, его свойства изменяются с изменением гравитационного поля. В общей теории относительности на место абсолютного пространства пришло гравитационное поле, таким образом "пустое пространство, т.е. пространство без поля, не существует, пространство-время существует не само по себе, но только как структурное свойство поля" . В общей теории относительности не только пространство и время по отдельности, но и пространственно-временной континуум лишается абсолютности. Согласно выводам общей теории относительности, метрика пространства и времени определяется распределением гравитационных масс во Вселенной.

    В марксистско-ленинской философии считалось, что основное философское значение теории относительности состоит в следующем.

    • 1. Теория относительности исключила из науки понятия абсолютного пространства и абсолютного времени, обнаружив тем самым несостоятельность субстанциальной трактовки пространства и времени как самостоятельных, независимых от материи форм бытия.
    • 2. Она показала зависимость пространственно-временных свойств от характера движения и взаимодействия материальных систем, подтвердила правильность трактовки пространства и времени как основных форм существования материи, в качестве содержания которых выступает движущаяся материя.

    Рассматривая философские выводы, сделанные на основе теории относительности, нужно иметь в виду следующее. Физика, как и любая иная наука, дает описание мира, опираясь лишь на те знания и представления, которые она может обобщить на данном этапе. И субстанциальная, и релятивистская концепции пространства и времени, разработанные в классической механике и теории относительности, принадлежат к физическим теориям пространства и времени. В этих научных теориях представлены концептуальные модели пространства и времени, причем, как обращают внимание некоторые ученые, время в теории относительности оказалось "опространственным", его специфика по сравнению с пространством не раскрыта, а "пространство-время" теории относительности – это искусственно совмещенный континуум .

    Научные споры вокруг теории относительности возникли сразу же при ее создании и не утихают по настоящее время.

    Как указывается в специальной научной литературе , в настоящее время нет сколько-нибудь убедительной экспериментальной проверки общей теории относительности. Более того, нет экспериментального подтверждения исходных посылок общей теории относительности. Например, до сих пор не подтверждено, что скорость распространения гравитационного возмущения равна скорости света в вакууме. Только эксперимент может дать ответ на вопрос, какова в действительности скорость распространения гравитации.

    Физики солидарны в том, что необходимо тщательное обсуждение физических основ теории относительности, установление границ ее применимости. Современные оценки философских выводов теории относительности более взвешенные. С точки зрения признания объективности пространства и времени обе эти концепции равноценны. Несмотря на различия, эти концепции отражают одно и то же реальное пространство и время, поэтому философия не может окончательно исключить ни одну из моделей, категорически признав ее абсолютно неприемлемой.

    Свою версию природы времени предложил известный российский астрофизик Н. А. Козырев (1908–1983) . Его концепция времени является субстанциональной, т.е. время рассматривается как самостоятельное явление природы, существующее наряду с веществом и физическими полями и воздействующее на объекты нашего мира и протекающие в нем процессы.

    Козырев исходил из идеи, что время – это не просто "чистая длительность", расстояние от одного события до другого, а нечто материальное, обладающее физическими свойствами. Можно сказать, что у времени два типа свойств: пассивные, связанные с геометрией нашего мира (их изучает теория относительности), и активные, зависящие от его внутреннего "устройства". Это и есть предмет теории Козырева.

    В конце XX в. появился целый ряд версий понимания сущности времени, подробный анализ которых можно найти в книге В. В. Крюкова . Анализируя новые подходы к пониманию времени и отмечая их перспективность для дальнейшей разработки проблемы времени, В. В. Крюков полагает, что в онтологическом плане следует формулировать заявленный подход предельно широко и вести речь о проявлении активности материи, какова бы ни была природа этой активности. В свою очередь активность материи может быть описана в двух взаимосвязанных один с другим аспектах: топологическом и метрическом, т.е. как последовательность событий и как их продолжительность .

    Взаимосвязь времени с внутренней энергией материальных тел рассматривается в концепции А. Н. Бича

    Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

    Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

    Размещено на http://www.allbest.ru/

    Министерство образования и науки Российской Федерации

    Федеральное государственное бюджетное образовательное учреждение

    высшего профессионального образования

    «Владимирский государственный университет

    имени А.Г. и Н.Г. Столетовых»

    Кафедра «АТБ»

    по дисциплине

    «Физика»

    «Пространство и время в физике»

    Выполнил:

    ст. гр. ЗТСБвд-113 Т.В. Макарова

    Принял: преподаватель

    М.А. Антонова

    Владимир 2013

    Введение

    2. Пространство и время

    3. Пространство и время в теории относительности Альберта Эйнштейна

    Заключение

    Список литературы

    Введение

    С древнейших времен человечество всегда было очаровано понятиями Пространства (Небеса) и Времени (Начало, Изменение и Конец). Ранние мыслители, начиная от Гаутамы Будды, Лао Цзы и Аристотеля, активно обращались к этим понятиям. За столетия, содержание рассуждений этих мыслителей, выкристаллизовала в человеческом сознании те мысленные образы, которые мы теперь используем в нашей повседневной жизни. Мы думаем о пространстве, как о трехмерном континууме, окутывающем нас. Мы представляем время, как длительность любого процесса, никак не затронутая силами, действующими в физической вселенной. А вместе они образуют сцену, на которой развивается вся драма взаимодействий, актерами которой является все остальное - звезды и планеты, поля и материя, Вы и я.

    Классическая физика рассматривала пространство как нечто абсолютное - вместилище объектов. Пространство полагалось бесконечным, линейным, непрерывным, а физическое пространство (область, которую составляют взаимодействующие материальные объекты) отождествлялось с математическим пространством дифференциальной геометрии. В теории относительности, которая появилась в начале 20 века, пространство уже не носит абсолютный характер, оно может изменяться, появляется понятие кривизны пространства, а при околосветовых скоростях, становятся возможны сокращения размеров объектов, но по-прежнему пространство представляет собой вместилище объектов. С появление теории систем появилось и новое понимание пространства как системы отношений между объектами. По мере развития системного подхода к познанию природы и развития техники, как практической деятельности по созданию технических систем, в науке развивается представление о дискретном пространстве-структуре. В современной физике пространство представляет собой математическую модель отношений между элементами структур, образованных материальными объектами. Выбор математической модели определяется структурой исследуемой системы и происходящими в ней процессами. Споры о том, сколько измерений имеет пространство, относятся к области математических моделей, это споры о том, какая модель более удобна и более наглядна. Так для описания движения твердых тел удобно использовать однородное непрерывное пространство дифференциальной геометрии не имеющее структуры (или имеющее однородную структуру). Это пространство имеет метрику (используются понятия расстояние, размер). А для описания движения потоков энергии в электрической цепи удобнее использовать дискретное пространство-структуру, состоящую из элементов электрической цепи и их связей (ветвей) - это область комбинаторной топологии (для одномерных ветвей - теория графов). Здесь пространство не имеет метрики (не применимы понятия расстояние, размер). Так как расстояние и структура создаются материей, то соответственно, без реальных объектов само по себе пространство не существует. Понятие пространства по отношению к понятиям "расстояние" (метрика) и "структура", является более высоким уровнем абстракции (обобщением) этих понятий. Измерение пространственных соотношений для метрического пространства производится методом сравнения расстояний с линейными размерами материальных объектов, выбранных в качестве эталона. Таким образом, осуществляется отображение физического пространства на математическую модель. Для человека ощущение пространства дает относительность масштабов, размеров (соотношение объекты/наблюдатель). Параметры околоземного пространства (магнитные и электрические поля, гравитация, термодинамические параметры) и происходящие в нем процессы для нас являются внешними условиями, так как мы погружены в эту среду. А мы, в свою очередь, как обособленные биосистемы, формируем внутри себя собственное пространство и собственную среду, где идут биохимические процессы, что и обеспечивает нашу жизнедеятельность. Наше внутреннее пространство и его параметры образуют внешние условия для объектов меньшего масштаба. Если и дальше продвигаться вниз по этой шкале, то внутримолекулярные условия являются внешними для атомов, внутриатомные - для ядер и электронов, входящих в атом, и т.д. Классическая физика рассматривала время - как нечто универсальное, независимое, то, относительно чего отсчитывают события и с помощью чего измеряют интервалы между событиями. Время полагалось непрерывным, равномерным, абсолютным, а физическое время (средство сравнения динамики материальных процессов) отождествлялось с математическим линейным одномерным пространством дифференциальной геометрии. В теории относительности, которая появилась в начале 20 века, время уже не носит абсолютный характер, оно может изменяться, предполагается, что в движущихся системах отсчета и вблизи тяготеющих масс время течет медленнее. В настоящее время в физике используют как непрерывное время процессов, так и дискретное время событий.

    В современной физике время образуется из множества процессов с различной динамикой и представляет собой интегрированное свойство окружающего мира. Фактически ни процессы, ни изменения, ни движения, не происходят во времени. Наоборот, они сами служат реальной физической основой для введения понятия времени. Время оказывается лишь более высоким уровнем абстракции, характеризующее динамику этих явлений. Тут прослеживается полная аналогия с понятием пространства, которое базируется на понятии расстояния, и является лишь более высоким уровнем абстракции. Аналогично, понятие времени базируется на ходе реальных движений, процессов, изменений и является лишь более удобной формой абстракции. Измерение временных соотношений производится методом сравнения промежутков между реальными событиями с количеством циклов высокостабильных циклических процессов, выбранных в качестве эталона.

    Таким образом, осуществляется отображение физического времени на математическую модель. Часы - это внутрисистемная динамика какой - либо системы, взятая в качестве эталона и служащая единицей динамичности, через которую выражается динамика и длительность других процессов.

    1. Античная доктрина о пространстве и времени

    пространство время эйнштейн микромир

    Атомистическая доктрина была развита материалистами Древней Греции Левкиппом и Демокритом. Согласно этой доктрины, всё природное многообразие состоит из мельчайших частичек материи (атомо), которые двигаются, сталкиваются и сочетаются в пустом пространстве. Атомы (бытие) и пустота (небытие) являются первоначалами мира. Атомы не возникают и не уничтожаются, их вечность проистекает из безначальности времени. Атомы двигаются в пустоте бесконечное время. Бесконечному пространству соответствует бесконечное время.

    Сторонники этой концепции полагали, что атомы физически неделимы в силу плотности и отсутствия в них пустоты. Множество атомов, которые не разделяются пустотой, превращаются в один большой атом, исчерпывающий собой мир.

    Сама же концепция была основана на атомах, которые в сочетании с пустотой образуют всё содержание реального мира. В основе этих атомов лежат амеры (пространственный минимум материи). Отсутствие у амеров частей служит критерием математической неделимости. Атомы не распадаются на амеры, а последние не существуют в свободном состоянии. Это совпадает с представлениями современной физики о кварках.

    Характеризуя систему Демокрита как теорию структурных уровней материи - физического (атомы и пустота) и математического (амеры), мы сталкиваемся с двумя пространствами: непрерывное физическое пространство как вместилище и математическое пространство, основанное на амерах как масштабных единицах протяжения материи.

    В соответствии с атомистической концепцией пространства Демокрит решал вопросы о природе времени и движения. В дальнейшем они были развиты Эпикуром в систему. Эпикур рассматривал свойства механического движения исходя из дискретного характера пространства и времени. Например, свойство изотахии заключается в том, что все атомы движутся с одинаковой скоростью. На математическом уровне суть изотахии состоит в том, что в процессе перемещения атомы проходят один "атом" пространства за один "атом" времени.

    Таким образом, древнегреческие атомисты различали два типа пространства и времени. В их представлениях были реализованы

    Аристотель начинает анализ с общего вопроса о существовании времени, затем трансформирует его в вопрос о существовании делимого времени. Дальнейший анализ времени ведётся Аристотелем уже на физическом уровне, где основное внимание он уделяет взаимосвязи времени и движения. Аристотель показывает, что время немыслимо, не существует без движения, но оно не есть и само движение. В такой модели времени реализована реляционная концепция. Измерить время и выбрать единицы его измерения можно с помощью любого периодического движения, но, для того чтобы полученная величина была универсальной, необходимо использовать движение с максимальной скоростью.

    В современной физике это скорость света, в античной и средневековой философии - скорость движения небесной сферы.

    Пространство для Аристотеля выступает в качестве некоего отношения предметов материального мира, оно понимается как объективная категория, как свойство природных вещей. Механика Аристотеля функционировала лишь в его модели мира. Она была построена на очевидных явлениях земного мира. Но это лишь один из уровней космоса Аристотеля. Его космологическая модель функционировала в конечном неоднородном пространстве, центр которого совпадал с центром Земли. Космос был разделен на земной и небесный уровни. Земной состоит из четырёх стихий - земли, воды, воздуха и огня; небесный - из эфирных тел, пребывающих в бесконечном круговом движении. Эта модель просуществовала около двух тысячелетий. Однако в системе Аристотеля были и другие положения, которые оказались более жизнеспособными и во многом определили развитие науки вплоть до настоящего времени. Речь идёт о логическом учении Аристотеля на основе которого были разработаны первые научные теории, в частности геометрия Евклида. В геометрии Евклида наряду с определениями и аксиомами встречаются и постулаты, что свойственно больше физике, чем арифметике. В постулатах сформулированы те задачи, которые считались решёнными. В таком подходе представлена модель теории, которая работает и сегодня: аксиоматическая система и эмпирический базис связываются операционными правилами. Геометрия Евклида является первой логической системой понятий, трактующих поведение каких-то природных объектов. Огромной заслугой Евклида является выбор в качестве объектов теории.

    Галилео Галилей вскрыл несостоятельность аристотелевской картины мира как в эмпирическом, так и в теоретико-логическом плане. С помощью телескопа он наглядно показал насколько глубоки были революционные представления Николая Коперника, который развил гелиоцентрическую модель мира. Первым шагом развития теории Коперника можно считать открытия И.Кеплера: 1. Каждая планета движется по эллипсу, в одном из фокусов которого находится Солнце. 2. Площадь сектора орбиты, описываемая радиус-вектором планеты, изменяется пропорционально времени. 3. Квадраты времён обращения планет вокруг Солнца относятся как кубы их средних расстояний от Солнца.

    Галилей, Декарт и Ньютон рассматривали различные сочетания концепций пространства и инерции: у Галилея признаётся пустое пространство и круговое инерциальное движение, Декарт дошёл до идеи прямолинейного инерциального движения, но отрицал пустое пространство, и только Ньютон объединил пустое пространство и прямолинейное инерциальное движение.

    Для Декарта не характерен осознанный и систематический учёт относительности движения. Его представления ограничены рамками геометризации физических объектов, ему чужда ньютоновская трактовка массы как инерциального сопротивления изменению. Для Ньютона же характерна динамическая трактовка массы, и в его системе это понятие сыграло основополагающую роль. Тело сохраняет для Декарта состояние движения или покоя, ибо это требуется неизменностью божества. То же самое достоверно для Ньютона вследствие массы тела.

    Понятия пространства и времени вводятся Ньютоном на начальном уровне изложения, а затем получают своё физическое содержание с помощью аксиом через законы движения. Однако они предшествуют аксиомам, так как служат условием для реализации аксиом: законы движения классической механики справедливы в инерциальных системах отсчёта, которые определяются как системы, движущиеся инерциально по отношению к абсолютному пространству и времени. У Ньютона абсолютное пространство и время являются ареной движения физических объектов.

    После выхода в свет "Начал" Ньютона физика начала активно развиваться, причём этот процесс происходил на основе механистического подхода. Однако, вскоре возникли разногласия между механикой и оптикой, которая не укладывалась в классические представления о движении тел.

    2. Пространство и время в физике

    Пространство и время в физике определяются в общем виде как фундаментальные структуры координации материальных объектов и их состояний: система отношений, отображающая координацию сосуществующих объектов (расстояния, ориентацию и т. д.), образует пространство, а система отношений, отображающая координацию сменяющих друг друга состояний или явлений (последовательность, длительность и т. д.), образует время. Пространство и время являются организующими структурами различных уровней физического познания и играют важную роль в межуровневых взаимоотношениях. Они (или сопряжённые с ними конструкции) во многом определяют структуру (метрическую, топологическую и т. д.) фундаментальных физических теорий, задают структуру эмпирические интерпретации и верификации физических теорий, структуру операциональных процедур (в основе которых лежат фиксации пространственно-временных совпадений в измерит. актах, с учётом специфики используемых физ. взаимодействий), а также организуют физ. картины мира. К такому представлению вёл весь исторический путь концептуального развития

    После того, как физики пришли к выводу о волновой природе света возникло понятие эфира - среды в которой свет распространяется. Каждая частица эфира могла быть представлена как источник вторичных волн, и можно было объяснить огромную скорость света огромной твёрдостью и упругостью частиц эфира. Иными словами эфир был материализацией Ньютоновского абсолютного пространства. Но это шло в разрез с основными положениями доктрины Ньютона о пространстве.

    Революция в физике началась открытием Рёмера - выяснилось, что скорость света конечна и равна примерно 300"000 км/с. В 1728 году Брэдри открыл явление звёздной аберрации. На основе этих открытий было установлено, что скорость света не зависит от движения источника и/или приёмника.

    О.Френель показал, что эфир может частично увлекаться движущимися телами, однако опыт А.Майкельсона (1881 г.) полностью это опроверг.

    Таким образом возникла необъяснимая несогласованность, оптические явления всё хуже сводились к механике. Но окончательно механистическую картину мира подорвало открытие Фарадея - Максвелла: свет оказался разновидностью электромагнитных волн. Многочисленные экспериментальные законы нашли отражение в системе уравнений Максвелла, которые описывают принципиально новые закономерности. Ареной этих законов является всё пространство, а не одни точки, в которых находится вещество или заряды, как это принимается для механических законов.

    Так возникла электромагнитная теория материи. Физики пришли к выводу о существовании дискретных элементарных объектов в рамках электромагнитной картины мира (электронов). Основные достижения в области исследования электрических и оптических явлений связаны с электронной теорией Г.Лоренца. Лоренц стоял на позиции классической механики. Он нашёл выход, который спасал абсолютное пространство и время классической механики, а также объяснял результат опыта Майкельсона, правда ему пришлось отказаться от преобразований координат Галилея и ввести свои собственные, основанные на неинвариантности времени. t"=t-(vx/cэ), где v - скорость движения системы относительно эфира, а х - координата той точки в движущейся системе, в которой производится измерение времени. Время t" он назвал "локальным временем". На основе этой теории виден эффект изменения размеров тел L2/L1=1+(vэ/2cэ). Сам Лоренц объяснил это опираясь на свою электронную теорию: тела испытывают сокращение вследствие сплющивания электронов.

    Теория Лоренца исчерпала возможности классической физики. Дальнейшее развитие физики было на пути ревизии фундаментальных концепций классической физики, отказа от принятия каких - либо выделенных систем отсчёта, отказа от абсолютного движения, ревизии концепции абсолютного пространства и времени. Это было сделано лишь в специальной теории относительности Эйнштейна.

    3. Пространство и время в теории относительности Альберта Эйнштейна.

    В теории относительности Эйнштейна вопрос о свойствах и структуре эфира трансформируется в вопрос о реальности самого эфира. Отрицательные результаты многих экспериментов по обнаружению эфира нашли естественное объяснение в теории относительности - эфир не существует. Отрицание существования эфира и принятие постулата о постоянстве и предельности скорости света легли в основу теории относительности, которая выступает как синтез механики и электродинамики.

    Принцип относительности и принцип постоянства скорости света позволили Эйнштейну перейти от теории Максвелла для покоящихся тел к непротиворечивой электродинамике движущихся тел. Далее Эйнштейн рассматривает относительность длин и промежутков времени, что приводит его к выводу о том, что понятие одновременности лишено смысла: " Два события, одновременные при наблюдении из одной координатной системы, уже не воспринимаются как одновременные при рассмотрении из системы, движущейся относительно данной ". Возникает необходимость развить теорию преобразования координат и времени от покоящейся системы к системе, равномерно и прямолинейно движущейся относительно первой. Эйнштейн пришел к формулировке преобразований Лоренца:

    Из этих преобразований вытекает отрицание неизменности протяжённости и длительности, величина которых зависит от движения системы отсчёта:

    В специальной теории относительности функционирует новый закон сложения скоростей, из которого вытекает невозможность превышения скорости света.

    Коренным отличием специальной теории относительности от предшествующех теорий является признание пространства и времени в качестве внутренних элементов движения материи, структура которых зависит от природы самого движения, является его функцией. В подходе Эйнштейна преобразования Лоренца оказываются связанными с новыми свойствами пространства и времени: с относительностью длины и временного промежутка, с равноправностью пространства и времени, с инвариантностью пространственно - временного интервала.

    Важный вклад в понятие "равноправность" внёс Г.Минковский. Он показал органическую взаимосвязь пространства и времени, которые оказались компонентами единого четырёхмерного континуума. Разделение на пространство и время не имеет смысла.

    Пространство и время в специальной теории относительности трактуется с точки зрения реляционной концепции. Однако было бы ошибочным представлять пространственно - временную структуру новой теории как проявление одной лишь концепции относительности. Введение Минковским четырёхмерного формализма помогло выявить аспекты "абсолютного мира", заданного в пространственно - временном континууме.

    В теории относительности, как и в классической механике, существуют два типа пространства и времени, которые реализуют субстанциальную и атрибутивную концепции. В классической механике абсолютные пространство и время выступали в качестве структуры мира на теоретическом уровне. В специальной теории относительности аналогичным статусом обладает единое четырёхмерное пространство - время.

    Переход от классической механики к специальной теории относительности можно представить так: 1) на теоретическом уровне - это переход от абсолютных и субстанциальных пространства и времени к абсолютному и субстанциальному единому пространству - времени, 2) на эмпирическом уровне - переход от относительных и экстенсионных пространства и времени Ньютона к реляционному пространству и времени Эйнштейна.

    Однако, когда Эйнштейн пытался расширить концепцию относительности на класс явлений, происходящих в неинерциальных системах отсчёта, это привело к созданию новой теории гравитации, к развитию релятивистской космологии и т.д. Он был вынужден прибегнуть к помощи иного метода построения физических теорий, в котором первичным выступает теоретический аспект.

    Новая теория - общая теория относительности - строилась путём построения обобщённого пространства и перехода от теоретической структуры исходной теории - специальной теории относительности - к теоретической структуре новой, обобщённой теории с последующей её эмпирической интерпретацией. Далее мы рассмотрим представление о пространстве и времени в свете общей теории относительности.

    Одной из причин создания общей теории относительности было желание Эйнштейна избавить физику от необходимости введения инерциальной системы отсчёта. Создание новой теории началось с пересмотра концепции пространства и времени в полевой доктрине Фарадея - Максвелла и специальной теории относительности. Эйнштейн акцентировал внимание на одном важном пункте, который остался незатронутым. Речь идет о следующем положении специальной теории относительности: "...двум выбранным материальным точкам покоящегося тела всегда соответствует некоторый отрезок определённой длины, независимо как от положения и ориентации тела, так и от времени. Двум отмеченным показаниям стрелки часов, покоящихся относительно некоторой системы координат, всегда соответствует интервал времени определённой величины, независимо от места и времени".

    Следует отметить, что в общей теории относительности находит наиболее полное воплощение представление диалектического материализма о пространстве и времени как формах существования материи. Специальная теория относительности не затрагивала проблему воздействия материи на структуру пространства-времени, а в общей теории Эйнштейн непосредственно обратился к органической взаимосвязи материи, движения, пространства и времени.

    Эйнштейн исходил из известного факта о равенстве инертной и тяжёлой масс. Он усмотрел в этом равенстве исходный пункт, на базе которого можно объяснить загадку гравитации. Проанализировав опыт Этвеша, Эйнштейн обобщил его результат в принцип эквивалентности: " физически невозможно отличить действие однородного гравитационного поля и поля, порождённого равноускоренным движением".

    Принцип эквивалентности носит локальный характер и, вообще говоря, не входит в структуру общей теории относительности. Он помог сформулировать основные принципы, на которых базируется новая теория: гипотезы о геометрической природе гравитации, о взаимосвязи геометрии пространства-времени и материи. Кроме них Эйнштейн выдвинул ряд математических гипотез, без которых невозможно было бы вывести гравитационные уравнения: пространство четырёхмерно, его структура определяется симметричным метрическим тензором, уравнения должны быть инвариантными относительно группы преобразований координат.

    В работе "Относительность и проблема пространства" Эйнштейн специально рассматривает вопрос о специфике понятия пространства в общей теории относительности. Согласно этой теории пространство не существует отдельно, как нечто противоположное "тому, что заполняет пространство" и что зависит от координат. "Пустое пространство, т.е. пространство без поля не существует. Пространство-время существует не само по себе, а только как структурное свойство поля".

    Для общей теории относительности до сих пор актуальной является проблема перехода от теоретических к физическим наблюдаемым величинам.

    Рассмотрим далее два направления, вытекающих из общей теории относительности: геометризацию гравитации и релятивистскую космологию, т.к. с ними связано дальнейшее развитие пространственно-временных представлений современной физики.

    Геометризация гравитации явилась первым шагом на пути создания единой теории поля. Первую попытку геометризации поля предприняв Г.Вейль. Она осуществлена за рамками римановской геометрии. Однако данное направление не привело к успеху. Были попытки ввести пространства более высокой размерности, чем четырёхмерное пространственно-временное многообразие Римана: Калуца предложил пятимерное, Клейн - шестимерное, Калицын - бесконечное многообразие. Однако таким путём решить проблему не удавалось.

    На пути пересмотра евклидовой топологии пространства - времени строится современная единая теория поля - квантовая геометродинамика Дж. Уитлера. В этой теории обобщение представлений о пространстве достигает очень высокой степени и вводится понятие суперпространства, как арены действия геометродинамики. При таком подходе каждому взаимодействию соответствует своя геометрия, и единство этих теорий заключается в существовании общего принципа, по которому порождаются данные геометрии и "расслаиваются" соответствующие пространства.

    Поиски единых теорий поля продолжаются. Что касается квантовой геометродинамики Уитлера, то перед ней стоит ещё более грандиозная задача - постичь Вселенную и элементарные частицы в их единстве и гармонии. Доэйнштейновские представления о Вселенной можно охарактеризовать следующим образом: Вселенная бесконечна и однородна в пространстве и стационарна во времени. Они были заимствованы из механики Ньютона - это абсолютные пространство и время, последнее по своему характеру Евклидово. Такая модель казалась очень гармоничной и единственной. Однако первые попытки приложения к этой модели физических законов и концепций привели к неестественным выводам.

    Уже классическая космология требовала пересмотра некоторых фундаментальных положений, чтобы преодолеть противоречия. Таких положений в классической космологии четыре: стационарность Вселенной, её однородность и изотропность, евклидовость пространства. Однако в рамках классической космологии преодолеть противоречия не удалось.

    Модель Вселенной, которая следовала из общей теории относительности, связана с ревизией всех фундаментальных положений классической космологии. Общая теория относительности отождествила гравитацию с искривлением четырёхмерного пространства - времени. Чтобы построить работающую относительно несложную модель, учёные вынуждены ограничить всеобщий пересмотр фундаментальных положений классической космологоии: общая теория относительности дополняется космологическим постулатом однородности и изотропности Вселенной. Строгое выполнение принципа изотропности Вселенной ведёт к признанию её однородности. На основе этого постулата в релятивистскую космологию вводится понятие мирового пространства и времени. Но это не абсолютные пространство и время Ньютона, которые хотя тоже были однородными и изотропными, но в силу евклидовости пространства имели нулевую кривизну. В применении к неевклидову пространству условия однородности и изотропности влекут постоянство кривизны, и здесь возможны три модификации такого пространства: с нулевой, отрицательной и положительной кривизной.

    Возможность для пространства и времени иметь различные значения постоянной кривизны подняли в космологии вопрос конечна Вселенная или бесконечна. В классической космологии подобного вопроса не возникало, т.к. евклидовость пространства и времени однозначно обуславливала её бесконечность. Однако в релятивистской космологии возможен и вариант конечной Вселенной - это соответствует пространству положительной кривизны.

    Вселенная Эйнштейна представляет собой трёхмерную сферу - замкнутое в себе неевклидово трёхмерное пространство. Оно является конечным, хотя и безграничным. Вселенная Эйнштейна конечна в пространстве, но бесконечна во времени. Однако стационарность вступала в противоречие с общей теорией относительности, Вселенная оказалась неустойчивой и стремилась либо расшириться, либо сжаться. Чтобы устранить это противоречие Эйнштейн ввёл в уравнения теории новый член с помощью которого во Вселенную вводились новые силы, пропорциональные расстоянию, их можно представить как силы притяжения и отталкивания.

    Дальнейшее развитие космологии оказалось связанным не со статической моделью Вселенной. Впервые нестационарная модель была развита А. А. Фридманом. Метрические свойства пространства оказались изменяющимися во времени. Выяснилось, что Вселенная расширяется. Подтверждение этого было обнаружено в 1929 году Э. Хабблом, который наблюдал красное смещение спектра. Оказалось, что скорость разбегания галактик возрастает с расстоянием и подчиняется закону Хаббла V = H*L, где Н - постоянная Хаббла, L - расстояние. Этот процесс продолжается и в настоящее время.

    В связи с этим встают две важные проблемы: проблема расширения пространства и проблема начала времени. Существует гипотеза, что так называние "разбегание галактик" - наглядное обозначение раскрытой космологией нестационарности пространственной метрики. Таким образом, не галактики разлетаются в неизменном пространстве, а расширяется само пространство. Вторая проблема связана с представлением о начале времени. Истоки истории Вселенной относятся к моменту времени t=0, когда произошёл так называемый Большой взрыв. В.Л. Гинзбург считает, что "...Вселенная в прошлом находилась в особом состоянии, которое отвечает началу времени, понятие времени до этого начала лишено физического, да и любого другого смысла".

    В релятивистской космологии была показана относительность конечности и бесконечности времени в различных системах отсчёта. Это положение особо чётко отразилось в представлениях о "чёрных дырах". Речь идет об одном из наиболее интересных явлений современной космологии - гравитационном коллапсе.

    С.Хокинс и Дж. Эллис отмечают: "Расширение Вселенной во многих отношениях подобно коллапсу звезды, если не считать того, что направление времени при расширении обратное".

    Как "начало" Вселенной, так и процессы в "чёрных дырах" связаны со сверхплотным состоянием материи. Таким свойством обладают космические тела после пересечения сферы Шварцшильда (условная сфера с радиусом r = 2GM/cэ, где G - гравитационная постоянная, М - масса). Независимо от того, в каком состоянии космический объект пересёк соответствующую сферу Шварцшильда, далее он стремительно переходит в сверхплотное состояние в процессе гравитационного коллапса. После этого от звезды невозможно получить никакой информации, т.к. ничто не может вырваться из этой сферы в окружающее пространство - время: звезда потухает для удалённого наблюдателя, и в пространстве образуется "чёрная дыра".

    Между коллапсирующей звездой и наблюдателем в обычном мире пролегает бесконечность, т. к. такая звезда находится за бесконечностью во времени.

    Таким образом, оказалось, что пространство - время в общей теории относительности содержит сингулярности, наличие которых заставляет пересмотреть концепцию пространственно - временного континуума как некоего дифференцируемого "гладкого" многообразия.

    Возникает проблема, связанная с представлением о конечной стадии гравитационного коллапса, когда вся масса звезды спрессовывается в точку

    (r->0), когда бесконечна плотность материи, бесконечна кривизна пространства и т.д. Это вызывает обоснованное сомнение. Дж. Уитлер считает, что в заключительной стадии гравитацинного коллапса вообще не существует пространства - времени. С. Хокинг пишет: "Сингулярность - это место, где разрушается классическая концепция пространства и времени так же, как и все известные законы физики, поскольку все они формулируются на основе классического пространства - времени. Этих представлений придерживаются большинство современных космологов.

    На заключительных стадиях гравитационного коллапса вблизи сингулярности необходимо учитывать квантовые эффекты. Они должны играть на этом уровне доминирующую роль и могут вообще не допускать сингулярности. Предполагается, что в этой области происходят субмикроскопические флуктуации материи, которые и составляют основу глубокого микромира.

    Всё это свидетельствует о том, что понять мегамир невозможно без понимания микромира.

    4. Пространство и время в физике микромира

    Создание Эйнштейном специальной теории относительности не исчерпывает возможности взаимодействия механики и электродинамики. В связи с объяснением теплового излучения было выявлено противоречие как в истолковании экспериментальных данных, так и в теоретической согласованности этих выводов. Это повлекло за собой рождение квантовой механики. Она положила начало неклассической физике, открыла дорогу к познанию микрокосмоса, к овладению внутриатомной энергией, к пониманию процессов в недрах звёзд и "начале" Вселенной.

    В конце XIX века физики начали исследовать, как распределяется излучение по всему спектру частот. В тот период физики задались также целью выяснить природу взаимосвязи энергии излучения и температуры тела. М. Планк пытался решить эту проблему с помощью методов классической электродинамики, но это не привело к успеху. Попытка решить проблему с позиции термодинамики столкнулась с рассогласованностью теории и эксперимента. Планк получил формулу плотности излучения с помощью интерполяции. Полученная Планком формула была очень содержательной, кроме того, она включала ранее неизвестную постоянную h, которую Планк назвал элементарным квантом действия. Справедливость формулы Планка достигалась очень странным для классической физики предположением: процесс излучения и поглощения энергии является дискретным.

    C работами Эйнштейна о фотонах в физику вошло представление о корпускулярно - волновом дуализме. Реальная природа света может быть представлена как диалектическое единство волны и частиц.

    Однако возник вопрос о сущности и структуре атома. Было предложено множеств о противоречащих друг другу моделей. Выход был найден Н. Бором путём синтеза планетарной модели атома Резерфорда и квантовой гипотезы. Он предположил, что атом может иметь ряд стационарных состояний при переходе в которые поглощается или излучается квант энергии. В самом же стационарном состоянии атом не излучает. Однако теория Бора не объясняла интенсивности и поляризации излучения. Частично с этим удалось справиться с помощь принципа соответствия Бора. Этот принцип сводится к тому, что при описании любой микроскопической теории необходимо пользоваться терминологией, применяемой в макромире.

    Принцип соответствия сыграл важную роль в исследованиях де Бройля. Он выяснил, что не только световые волны обладают дискретной структурой, но и элементарным частотам материи присущ волновой характер. На повестку дня встала проблема создания волновой механики квантовых объектов, которая в 1929 году была решена Э. Шредингером, который вывел волновое уравнение, носящее его имя.

    Н. Бор вскрыл истинный смысл волнового уравнения Шредингера. Он показал, что это уравнение описывает амплитуду вероятности нахождения частицы в данной области пространства.

    Чуть раньше (1925г.) Гейзенбергом была разработана квантовая механика. Формальные правила этой теории основаны на соотношении неопределённостей Гейзенберга: чем больше неопределённость пространственной координаты, тем меньше неопределённость значения импульса частицы. Аналогичное соотношение имеет место для времени и энергии частицы.

    Таким образом, в квантовой механике была найдена принципиальная граница применимости классических физических представлений к атомным явлениям и процессам.

    В квантовой физике была поставлена важная проблема о необходимости пересмотра пространственных представлений лапласовского детерминизма классической физики. Они оказались лишь приближёнными понятиями и основывались на слишком сильных идеализациях. Квантовая физика потребовала более адекватных форм упорядоченности событий, в которых учитывалось бы существование принципиальной неопределённости в состоянии объекта, наличие черт целостности и индивидуальности в микромире, что и выражалось в понятии универсального кванта действия h.

    Квантовая механика была положена в основу бурно развивающейся физики элементарных частиц, количество которых достигает нескольких сотен, но до настоящего времени ещё не создана корректная обобщающая теория. В физике элементарных частиц представления о пространстве и времени столкнулись с ещё большими трудностями. Оказалось, что микромир является многоуровневой системой, на каждом уровне которой господствуют специфические виды взаимодействий и специфические свойства пространственно - временных отношений. Область доступных в эксперименте микроскопических интервалов условно делится на четыре уровня: 1) уровень молекулярно - атомных явлений, 2) уровень релятивистских квантовоэлектродинамических процессов, 3) уровень элементарных частиц, 4) уровень ультрамалых масштабов, где пространственно - временные отношения оказываются несколько иными, чем в классической физике макромира. В этой области по-иному следует понимать природу пустоты - вакуум.

    В квантовой электродинамике вакуум является сложной системой виртуально рождающихся и поглощающихся фотонов, электронно- позитронных пар и других частиц. На этом уровне вакуум рассматривают как особый вид материи - как поле в состоянии с минимально возможной энергией. Квантовая электродинамика впервые наглядно показала, что пространство и время нельзя оторвать от материи, что так называемая "пустота" - это одно из состояний материи. Квантовая механика была применена к вакууму, и оказалось, что минимальное состояние энергии не характеризуется нулевой её плотностью. Минимум её оказался равным уровню осциллятора hv/2. "Допустив скромные 0.5hv для каждой отдельной волны, - пишет Я. Зельдович, - мы немедленно с ужасом обнаруживаем, что все волны вместе дают бесконечную плотность энергии". Эта бесконечная энергия пустого пространства таит в себе огромные возможности, которые ещё предстоит освоить физике.

    Продвигаясь вглубь материи, учёные перешагнули рубеж 10 см. и начали исследовать физические процессы в области субатомных пространственно - временных отношений. На этом уровне структурной организации материи определяющую роль играют сильные взаимодействия элементарных частиц. Здесь иные пространственно - временные понятия. Так, специфике микромира не соответствуют обыденные представления о соотношении части и целого. Ещё более радикальных изменений пространственно - временных представлений требует переход к исследованию процессов, характерных для слабых взаимодействий. Поэтому на повестку дня встаёт вопрос о нарушении пространственной и временной чётности, т.е. правое и левое пространственные направления оказываются неэквивалентными.

    В этих условиях были предприняты различные попытки принципиально нового истолкования пространства и времени. Одно направление связано с изменением представлений о прерывности и непрерывности пространства и времени, а второе - с гипотезой о возможной макроскопической природе пространства и времени. Рассмотрим более подробно эти направления.

    Физика микромира развивается в сложном единстве и взаимодействии прерывности и непрерывности. Это относится не только к структуре материи, но и к структуре пространства и времени.

    После создания теории относительности и квантовой механики учёные попытались объединить эти две фундаментальные теории. Первым достижением на этом пути явилось релятивистское волновое уравнение для электрона. Был получен неожиданный вывод о существовании антипода электрона - частицы с противоположным электрическим зарядом. В настоящее время известно, что каждой частице в природе соответствует античастица, это обусловлено фундаментальными положениями современной теории и связано с кардинальными свойствами пространства и времени (чётность пространства, отражение времени и т.д.).

    Исторически первой квантовой теорией поля была квантовая электродинамика, включающая в себя описание взаимодействий электронов, позитронов, мюонов и фотонов. Это пока единственная ветвь теории элементарных частиц, которая достигла высокого уровня развития и известной завершённости. Она является локальной теорией, в ней функционируют заимствованные понятия классической физики, основанные на концепции пространственно - временной непрерывности: точечность заряда, локальность поля, точечность взаимодействия и т. д. Наличие этих понятий влечёт за собой существенные трудности, связанные с бесконечными значениями некоторых величин (масса, собственная энергия электрона, энергия нулевых колебаний поля и т.д.).

    Эти трудности учёные пытались преодолеть путём введения в теорию понятий о дискретном пространстве и времени. Такой подход намечает единственный выход из неопределённости бесконечности, т.к. содержит фундаментальную длину - основу атомистического пространства.

    Позже была построена обобщённая квантовая электродинамика, которая также является локальной теорией, описывающей точечные взаимодействия точечных частиц, что приводит к существенным трудностям. Например, наличие электромагнитного и электронно-позитронного вакуума обуславливает необходимость внутренней сложности, структурности электрона. Электрон поляризует вакуум, и флуктуации последнего создают вокруг электрона атмосферу из виртуальной электронно - позитронной пары.

    При этом вполне вероятен процесс аннигиляции исходного электрона с позитроном пары. Оставшийся электрон можно рассматривать как исходный, но в другой точке пространства. Подобная специфика объектов квантовой электродинамики является веским аргументом в пользу концепции пространственно - временной дискретности. В её основе лежит идея о том, что масса и заряд электрона находятся в разных физических полях, отличны от массы и заряда идеализированного (изолированного от мира) электрона. Разность между массами оказывается бесконечной. При оперировании этими бесконечностями их можно выразить через физические константы - заряд и массу реального электрона. Это достигается путём перенормировки теории.

    Что касается теории сильных взаимодействий, то там процедуру перенормировки использовать не удаётся. В связи с этим в физике микромира широкое развитие получило направление, связанное с пересмотром концепции локальности. Отказ от точечности взаимодействия микрообъектов может осуществляться двумя методами. При первом исходят из положения. что понятие локального взаимодействия лишено смысла. Второй основан на отрицании понятия точечной координаты пространства - времени, что приводит к теории квантового пространства - времени. Протяжённая элементарная частица обладает сложной динамической структурой. Подобная сложная структура микрообъектов ставит под сомнение их элементарность. Учёные столкнулись не только со сменой объекта, к которому прилагается свойство элементарности, но и с пересмотром самой диалектики элементарного и сложного в микромире. Элементарные частицы не элементарны в классическом смысле: они похожи на классические сложные системы, но они не являются этими системами. В элементарных частицах сочетаются противоположные свойства элементарного и сложного. Отказ от представлений о точечности взаимодействия влечёт за собой изменение наших представлений о структуре пространства - времени и причинности, которые тесно взаимосвязаны. По мнению некоторых физиков, в микромире теряют смысл обычные временные отношения "раньше" и "позже". В области нелокального взаимодействия события связаны в некий "комок", в котором они взаимно обуславливают друг друга, но не следуют одно за другим.

    Таково принципиальное положение дел, сложившееся в развитии квантовой теории поля, начиная с работ Гейзенберга и кончая современными нелокальными и нелинейными теориями, где нарушение причинности в микромире провозглашается в качестве принципа и отмечается, что разграничение пространства - времени на области "малые", где причинность нарушена, и большие, где она выполнена, невозможно без появления в нелокальной теории новой константы размерности длины - элементарной длины. С этим "атомом" пространства связан и элементарный момент времени (хронон), и именно в соответствующей им пространственно - временной области протекает сам процесс взаимодействия частиц.

    Теория дискретного пространства - времени продолжает развиваться. Открытым остаётся вопрос о внутренней структуре "атомов" пространства и времени. Существует ли пространство и время в "атомах" пространства и времени? Это одна из версий гипотезы о возможной макроскопичности пространства и времени, которая будет рассмотрена ниже.

    Заключение

    Взаимосвязь свойств симметрии пространства и времени с законами сохранения физических величин была установлена ещё в классической физике. Закон сохранения импульса оказался тесно связанным с однородностью пространства, закон сохранения энергии - с однородностью времени, закон сохранения момента количества движения - с изотропностью пространства. В специальной теории относительности эта связь обобщается на четырёхмерное пространство-время. Общерелятивистское обобщение последовательно провести пока не удалось.

    Серьёзные трудности возникли также при попытке использовать выработанные в классической (в т. ч. релятивистской), т. е. неквантовой, физике понятия пространства и времени для теории описания явлений в микромире. Уже в нерелятивистской квантовой механике оказалось невозможным говорить о траекториях микрочастиц, и применимость понятий пространства и времени к теории описанию микрообъектов была ограничена дополнительно принципом (или неопределённостей соотношением). С принципиальными трудностями встречается экстраполяция макроскопических понятий пространства и времени на микромир в квантовой теории поля (расходимости, отсутствие объединения унитарной симметрии с пространственно-временными, теоремы Уайтмана и Хаага). С целью преодоления этих трудностей был выдвинут ряд предложений по модификации смысла понятий пространства и времени - квантование пространства-времени, изменение сигнатуры метрики пространства и времени, увеличение размерности пространства и времени, учёт его топологии (геометродинамика) и др. Наиболее радикальной попыткой преодоления трудностей релятивистской квантовой теории является гипотеза о неприменимости понятий пространства и времени к микромиру. Аналогичные соображения высказываются также в связи с попытками осмысления природы начала сингулярности в модели расширяющейся горячей Вселенной. Большинство физиков, однако, убеждены в универсальности пространства-времени признавая необходимость существенные изменения смысла понятий пространства и времени

    Общность же пространства-времени заключается в том, что они оба связаны с процессами в системе, если характер процессов и внутренняя структура определяют само пространство и его параметры, то динамика внутренних процессов создают эффект времени. Как видим, пространство и время представляют собой лишь разные средства описания одного и того же явления - процессов. Понимая систему как структуру связанных элементов и процессов, протекающих в этой структуре можно сказать, что связи между элементами образуют пути, а процессы, протекающие в этих путях, представляют собой потоки вещества и энергии. При этом элементы системы и связи между ними образуют пространство системы, а динамика потоков вещества и энергии представляет собой время системы. Так для электрической цепи пространство-структура (узлы, контуры, ветви) описывается законами Кирхгофа, а процессы в ветвях описываются законом Ома и его обобщениями. При этом теория расчетов электрических цепей рассматривает одновременно и уравнения процессов и уравнения структуры. Эти уравнения и представляют собой пространство-время, как математическую модель процессов в электрической цепи.

    Список литературы

    1.Физический энциклопедический словарь - М.: Советская энциклопедия. Главный редактор А. М. Прохоров. 1983;

    2. Потёмкин В.К., Симанов А.Л. Пространство в структуре мира, Новосибирск: Наука,-1990;

    3. Владимиров Ю. С., Пространство-время: явные и скрытые размерности, М., 1989;

    4. Кузнецов В.М. Концепции мироздания в современной физике: учебное пособие для вузов -М: Академия, 2006;

    5. Детлаф А.А. Курс физики: учебное пособие для вузов/Детлаф А.А., Яворский Б.М. -М. Академия, 2007.

    Размещено на Allbest.ru

    ...

    Подобные документы

      Развитие представлений о пространстве и времени, их общие свойства. Необратимость времени как проявление асимметрии, асимметрия причинно-следственных отношений. Гипотезы Н.А. Козырева о новых свойствах времени. Теория N–мерности пространства и времени.

      контрольная работа , добавлен 05.10.2009

      Преобразования Лоренца и основные следствия из них. Четырехмерное пространство Эйнштейна. Расстояние между точками трехмерного пространства. Интервал между двумя событиями. Промежуток собственного времени. События, разделенные вещественным интервалом.

      лекция , добавлен 28.06.2013

      Положения теории относительности. Релятивистское сокращение длин и промежутков времени. Инертная масса тела. Причинно-следственные связи, пространственно-временной интервал между событиями. Единство пространства и времени. Эквивалентность массы и энергии.

      контрольная работа , добавлен 16.12.2011

      Физическая теория материи, многомерные модели Вселенной. Физические следствия, вытекающие из теории многомерных пространств. Геометрия Вселенной, свойства пространства и времени, теория большого взрыва. Многомерные пространства микромира и Вселенной.

      курсовая работа , добавлен 27.09.2009

      Развитие представления о пространстве и времени. Парадигма научной фантастики. Принцип относительности и законы сохранения. Абсолютность скорости света. Парадокс замкнутых мировых линий. Замедление хода времени в зависимости от скорости движения.

      реферат , добавлен 10.05.2009

      Исследование представлений о времени древних людей и открытий, связанных со временем. Характеристика понятия времени в классической и релятивистской физике. Анализ гипотез о перемещении человека или другого объекта из настоящего в прошлое или будущее.

      презентация , добавлен 06.06.2012

      Время-объект физического исследования. Время и движение, машина времени. Время и тяготение. Черные дыры: время остановилось. Время осуществляет связь между всеми явлениями Природы. Время обладает разнообразными свойствами, которые можно изучить опытами.

      реферат , добавлен 08.05.2003

      Преобразования Галилея и Лоренца. Создание специальной теории относительности. Обоснование постулатов Эйнштейна и элементов релятивистской динамики. Принцип равенства гравитационной и инертной масс. Пространство-время ОТО и концепция эквивалентности.

      презентация , добавлен 27.02.2012

      Разделение четырехмерного пространства на физическое время и трехмерное пространство. Постоянство и изотропия скорости света, определение одновременности. Расчет эффекта Саньяка в предположении анизотропии скорости света. Изучение свойств NUT-параметра.

      статья , добавлен 22.06.2015

      Четырехмерное пространство-время. Уравнения Максвелла в пустоте. Пространственные углы Эйлера. Формула опускания индекса контравариантного вектора. Основные законы преобразования тензоров на четырехмерном многообразии. Расстояния между событиями.